معرفی شرکت ها


aalpy-1.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

An active automata learning library
ویژگی مقدار
سیستم عامل -
نام فایل aalpy-1.3.0
نام aalpy
نسخه کتابخانه 1.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Edi Muskardin
ایمیل نویسنده edi.muskardin@silicon-austria.com
آدرس صفحه اصلی https://github.com/DES-Lab/AALpy
آدرس اینترنتی https://pypi.org/project/aalpy/
مجوز MIT
<div align="center"> <h1 align="center">AALpy</h1> <p align="center">An Active Automata Learning Library</p> [![Python application](https://github.com/DES-Lab/AALpy/actions/workflows/python-app.yml/badge.svg)](https://github.com/DES-Lab/AALpy/actions/workflows/python-app.yml) [![CodeQL](https://github.com/DES-Lab/AALpy/actions/workflows/codeql-analysis.yml/badge.svg)](https://github.com/DES-Lab/AALpy/actions/workflows/codeql-analysis.yml) ![PyPI - Downloads](https://img.shields.io/pypi/dm/aalpy) [![GitHub issues](https://img.shields.io/github/issues/DES-Lab/AALpy)](https://github.com/DES-Lab/AALpy/issues) ![GitHub pull requests](https://img.shields.io/github/issues-pr/des-lab/aalpy) [![Python 3.6](https://img.shields.io/badge/python-3.6%2B-blue)](https://www.python.org/downloads/release/python-360/) ![PyPI - Wheel](https://img.shields.io/pypi/wheel/aalpy) [![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/Naereen/StrapDown.js/graphs/commit-activity) [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT) </div> <hr /> AALpy is a light-weight automata learning library written in Python. You can start learning automata in just a few lines of code. Whether you work with regular languages or you would like to learn models of (black-box) reactive systems, AALpy supports a wide range of modeling formalisms, including **deterministic**, **non-deterministic**, and **stochastic automata**. <div align="center"> | **Automata Type** | **Supported Formalisms** | **Algorithms** | **Features** | |-------------------|:-----------------------------------------------------------------:|-----------------------|-------------------------------------------------------------------:| | Deterministic | DFAs <br /> Mealy Machines <br /> Moore Machines | L* <br /> KV <br /> RPNI | Seamless Caching <br /> Counterexample Processing <br /> 11 Equivalence Oracles | | Non-Deterministic | ONFSM <br /> Abstracted ONFSM | L*<sub>ONFSM</sub> | Size Reduction Trough Abstraction | | Stochastic | Markov Decision Processes <br /> Stochastic Mealy Machines <br /> Markov Chains | L*<sub>MDP</sub> <br /> L*<sub>SMM</sub> <br /> ALERGIA | Counterexample Processing <br /> Exportable to PRISM format <br /> Bindings to jALERGIA| </div> AALpy enables efficient learning by providing a large set of equivalence oracles, implementing various conformance testing strategies. Active learning is mostly based on Angluin's [L* algorithm](https://people.eecs.berkeley.edu/~dawnsong/teaching/s10/papers/angluin87.pdf), for which AALpy supports a selection of optimizations, including efficient counterexample processing caching. However, the recent addition of efficiently implemented [KV](https://mitpress.mit.edu/9780262111935/an-introduction-to-computational-learning-theory/) algorithm requires (on average) much less interaction with the system under learning than L*. AALpy also includes **passive automata learning algorithms**, namely RPNI for deterministic and ALERGIA for stochastic models. Unlike active algorithms which learn by interaction with the system, passive learning algorithms construct a model based on provided data. ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest release of AALpy: ```bash pip install aalpy ``` To install current version of the master branch. It might contain bugfixes and added functionalities between releases. ```bash pip install https://github.com/DES-Lab/AALpy/archive/master.zip ``` The minimum required version of Python is 3.6. Ensure that you have [Graphviz](https://graphviz.org/) installed and added to your path if you want to visualize models. For manual installation, clone the repo and install `pydot` (the only dependency). ## Documentation and Wiki If you are interested in automata learning or would like to understand the automata learning process in more detail, please check out our **Wiki**. On Wiki, you will find more detailed examples on how to use AALpy. - <https://github.com/DES-Lab/AALpy/wiki> For the **official documentation** of all classes and methods, check out: - <https://des-lab.github.io/AALpy/documentation/index.html> ***[Examples.py](https://github.com/DES-Lab/AALpy/blob/master/Examples.py)*** contains many examples and it is a great starting point. ## Usage All automata learning procedures follow this high-level approach: - [Define the input alphabet and system under learning (SUL)](https://github.com/DES-Lab/AALpy/wiki/SUL-Interface,-or-How-to-Learn-Your-Systems) - [Choose the equivalence oracle](https://github.com/DES-Lab/AALpy/wiki/Equivalence-Oracles) - [Run the learning algorithm](https://github.com/DES-Lab/AALpy/wiki/Setting-Up-Learning) For more detailed examples, check out: - [How to learn Regex with AALpy](https://github.com/DES-Lab/AALpy/wiki/SUL-Interface,-or-How-to-Learn-Your-Systems#example---regexsul) - [How to learn MQTT with AALpy](https://github.com/DES-Lab/AALpy/wiki/SUL-Interface,-or-How-to-Learn-Your-Systems#example---mqtt) - [Few Simple Examples](https://github.com/DES-Lab/Automata-Learning-Based-Diagnosis) - [Interactive Examples](https://github.com/DES-Lab/AALpy/tree/master/notebooks) - [Examples.py](https://github.com/DES-Lab/AALpy/blob/master/Examples.py) [Examples.py](https://github.com/DES-Lab/AALpy/blob/master/Examples.py) contains examples covering almost the whole AALpy's functionality, and it is a great starting point/reference. [Wiki](https://github.com/DES-Lab/AALpy/wiki) has a step-by-step guide to using AALpy and can help you understand AALpy and automata learning in general. <details> <summary>Code snipped demonstrating some of AALpy's functionalities</summary> The following snippet demonstrates a short example in which an automaton is either [loaded](https://github.com/DES-Lab/AALpy/wiki/Loading,Saving,-Syntax-and-Visualization-of-Automata) or [randomly generated](https://github.com/DES-Lab/AALpy/wiki/Generation-of-Random-Automata) and then [learned](https://github.com/DES-Lab/AALpy/wiki/Setting-Up-Learning). ```python from aalpy.utils import load_automaton_from_file, save_automaton_to_file, visualize_automaton, generate_random_dfa, dfa_from_state_setup from aalpy.SULs import DfaSUL from aalpy.oracles import RandomWalkEqOracle from aalpy.learning_algs import run_Lstar, run_KV # load an automaton # automaton = load_automaton_from_file('path_to_the_file.dot', automaton_type='dfa') # or construct it from state setup dfa_state_setup = { 'q0': (True, {'a': 'q1', 'b': 'q2'}), 'q1': (False, {'a': 'q0', 'b': 'q3'}), 'q2': (False, {'a': 'q3', 'b': 'q0'}), 'q3': (False, {'a': 'q2', 'b': 'q1'}) } small_dfa = dfa_from_state_setup(dfa_state_setup) # or randomly generate one random_dfa = generate_random_dfa(alphabet=[1,2,3,4,5],num_states=20, num_accepting_states=8) big_random_dfa = generate_random_dfa(alphabet=[1,2,3,4,5],num_states=2000, num_accepting_states=500) # get input alphabet of the automaton alphabet = random_dfa.get_input_alphabet() # loaded or randomly generated automata are considered as BLACK-BOX that is queried # learning algorithm has no knowledge about its structure # create a SUL instance for the automaton/system under learning sul = DfaSUL(random_dfa) # define the equivalence oracle eq_oracle = RandomWalkEqOracle(alphabet, sul, num_steps=5000, reset_prob=0.09) # start learning # run_KV is for the most part reacquires much fewer interactions with the system under learning learned_dfa = run_KV(alphabet, sul, eq_oracle, automaton_type='dfa') # or run L* # learned_dfa_lstar = run_Lstar(alphabet, sul, eq_oracle, automaton_type='dfa') # save automaton to file and visualize it # save_automaton_to_file(learned_dfa, path='Learned_Automaton', file_type='dot') # or learned_dfa.save() # visualize automaton # visualize_automaton(learned_dfa) learned_dfa.visualize() # or just print its DOT representation print(learned_dfa) ``` </details> To make experiments reproducible, define a random seed at the beginning of your program. ```Python from random import seed seed(2) # all experiments will be reproducible ``` ## Selected Applications AALpy has been used to: - [Learn Bluetooth Low-Energy](https://github.com/apferscher/ble-learning) - [Learn Input-Output Behavior of RNNs](https://github.com/DES-Lab/Extracting-FSM-From-RNNs) - [Find bugs in VIM text editor](https://github.com/DES-Lab/AALpy/discussions/13) ## Cite AALpy and Research Contact If you use AALpy in your research, please cite us with of the following: - [Extended version (preferred)](https://www.researchgate.net/publication/359517046_AALpy_an_active_automata_learning_library/citation/download) - [Tool paper](https://dblp.org/rec/conf/atva/MuskardinAPPT21.html?view=bibtex) If you have research suggestions or you need specific help concerning your research, feel free to start a [discussion](https://github.com/DES-Lab/AALpy/discussions) or contact [edi.muskardin@silicon-austria.com](mailto:edi.muskardin@silicon-austria.com). We are happy to help you and consult you in applying automata learning in various domains. ## Contributing Pull requests are welcome. For significant changes, please open an issue first to discuss what you would like to change. In case of any questions or possible bugs, please open issues.


نیازمندی

مقدار نام
- pydot


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl aalpy-1.3.0:

    pip install aalpy-1.3.0.whl


نصب پکیج tar.gz aalpy-1.3.0:

    pip install aalpy-1.3.0.tar.gz