معرفی شرکت ها


aac-distributions-0.7


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Gaussian and Binomial distributions
ویژگی مقدار
سیستم عامل -
نام فایل aac-distributions-0.7
نام aac-distributions
نسخه کتابخانه 0.7
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Alberto Armero
ایمیل نویسنده alberto.armero86@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/aac-distributions/
مجوز -
# aac-distributions package # This package provides the Gaussian and Binomial distribution classes. ------------------------------------------------------------------------------------------------- * Gaussian - Gaussian distribution class for calculating and visualizing a Gaussian distribution. ------------------------------------------------------------------------------------------------- Attributes: mean (float) - representing the mean value of the distribution. stdev (float) - representing the standard deviation of the distribution. data_list (list of floats) - a list of floats extracted from the data file. Methods: calculate_mean() - Function to calculate the mean of the data set. calculate_stdev() - Function to calculate the standard deviation of the data set. plot_histogram() - Function to output a histogram of the instance variable data using matplotlib pyplot library. read_data_file(filename) - Function to read in data from a txt file. The txt file should have one number (float) per line. The numbers are stored in the data attribute. pdf(x) - Probability density function calculator for the Gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output plot_histogram_pdf(n_spaces) - Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot __add__(other) - Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution __repr__() - Function to output the characteristics of the Gaussian instance ------------------------------------------------------------------------------------------------- * Binomial - Binomial distribution class for calculating and visualizing a Binomial distribution. ------------------------------------------------------------------------------------------------- Attributes: mean (float) representing the mean value of the distribution. stdev (float) representing the standard deviation of the distribution. data_list (list of floats) a list of floats to be extracted from the data file. p (float) representing the probability of an event occurring. n (int) number of trials. Methods: calculate_mean() - Function to calculate the mean of the Binomial distribution from p and n. calculate_stdev() - Function to calculate the standard deviation of the Binomial distribution from p and n. read_data_file(filename) - Function to read in data from a txt file. The txt file should have one number (float) per line. The numbers are stored in the data attribute. replace_stats_with_data() - Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value plot_bar() - Function to output a bar chart of the instance variable data using matplotlib pyplot library. pdf(k) - Probability density function calculator for the binomial distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output plot_bar_pdf() - Function that creates the bar chart that plots the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot __add__(other) - Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution __repr__() - Function to output the characteristics of the Binomial instance. ------------------------------------------------------------------------------------------------------- * Distribution - Generic distribution class for calculating and visualizing a probability distribution, from which Gaussian and Binary distributions inherit ------------------------------------------------------------------------------------------------------- Attributes: mean (float) representing the mean value of the distribution. stdev (float) representing the standard deviation of the distribution. data_list (list of floats) a list of floats to be extracted from the data file. Methods: read_data_file(filename) - Function to read in data from a txt file. The txt file should have one number (float) per line. The numbers are stored in the data attribute. # Files * Generaldistribution.py -> contains the Distribution class, its attributes and methods being inherited by Gaussian and Binomial class. * Gaussiandistribution.py -> contains the Gaussian class, its attributes and methods as described in aac-distributions package summary. * Binomialdistribution.py -> contains the Binomial class, its attributes and methods as described in aac-distributions package summary. # Installation * Note: In __init__.py, notice that there's is a dot in front of the .py files when importing the Gaussian and Binomial classes. * This dot is required in Python 3.X, but if you are working in Python 2.X, you shouldn't need it. * The classes in this package make use of built-in Python libraries like: Math - provides access to mathematical functions matplotlib - provides data visualization and graphical plotting functionality * To install the package, type pip install aac-distributions


نحوه نصب


نصب پکیج whl aac-distributions-0.7:

    pip install aac-distributions-0.7.whl


نصب پکیج tar.gz aac-distributions-0.7:

    pip install aac-distributions-0.7.tar.gz