معرفی شرکت ها


a2t-0.4.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Ask2Transformers is a library for zero-shot classification based on Transformers.
ویژگی مقدار
سیستم عامل -
نام فایل a2t-0.4.0
نام a2t
نسخه کتابخانه 0.4.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Oscar Sainz
ایمیل نویسنده oscar.sainz@ehu.eus
آدرس صفحه اصلی https://github.com/osainz59/Ask2Transformers
آدرس اینترنتی https://pypi.org/project/a2t/
مجوز -
<h1 align="center">Ask2Transformers</h1> <h3 align="center">A Framework for Textual Entailment based Zero Shot text classification</h3> <p align="center"> <a href="https://paperswithcode.com/sota/domain-labelling-on-babeldomains?p=ask2transformers-zero-shot-domain-labelling"> <img align="center" alt="Contributor Covenant" src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ask2transformers-zero-shot-domain-labelling/domain-labelling-on-babeldomains"> </a> </p> This repository contains the code for out of the box ready to use zero-shot classifiers among different tasks, such as Topic Labelling or Relation Extraction. It is built on top of 🤗 HuggingFace [Transformers](https://github.com/huggingface/transformers) library, so you are free to choose among hundreds of models. You can either, use a dataset specific classifier or define one yourself with just labels descriptions or templates! The repository contains the code for the following publications: - 📄 [Ask2Transformers - Zero Shot Domain Labelling with Pretrained Transformers](https://aclanthology.org/2021.gwc-1.6/) accepted in [GWC2021](http://globalwordnet.org/global-wordnet-conferences-2/). - 📄 [Label Verbalization and Entailment for Effective Zero- and Few-Shot Relation Extraction](https://aclanthology.org/2021.emnlp-main.92/) accepted in [EMNLP2021](https://2021.emnlp.org/) - 📄 [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning]() accepted as Findings in [NAACL2022]() <!-- ### Supported (and benchmarked) tasks: Follow the links to see some examples of how to use the library on each task. - [Topic classification](./a2t/topic_classification/) evaluated on BabelDomains (Camacho- Collados and Navigli, 2017) dataset. - [Relation classification](./a2t/relation_classification/) evaluated on TACRED (Zhang et al., 2017) dataset. --> To get started with the repository consider reading the **new** [documentation](https://osainz59.github.io/Ask2Transformers)! # Installation By using Pip (check the last release) ```shell script pip install a2t ``` Or by clonning the repository ```shell script git clone https://github.com/osainz59/Ask2Transformers.git cd Ask2Transformers python -m pip install . ``` <!-- [//]: <img src="./imgs/RE_NLI.svg" style="background-color: white; border-radius: 15px"> --> # Demo 🕹️ We have realeased a demo on Zero-Shot Information Extraction using Textual Entailment ([ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations](https://arxiv.org/abs/2203.13602)) accepted in the [Demo Track of NAACL 2022](). The code is publicly availabe on its own GitHub repository: [ZS4IE](https://github.com/bbn-e/zs4ie). # Models ## Available models By default, `roberta-large-mnli` checkpoint is used to perform the inference. You can try different models to perform the zero-shot classification, but they need to be finetuned on a NLI task and be compatible with the `AutoModelForSequenceClassification` class from Transformers. For example: * `roberta-large-mnli` * `joeddav/xlm-roberta-large-xnli` * `facebook/bart-large-mnli` * `microsoft/deberta-v2-xlarge-mnli` **Coming soon:** `t5-large` like generative models support. ## Pre-trained models 🆕 We now provide (task specific) pre-trained entailment models to: (1) **reproduce** the results of the papers and (2) **reuse** them for new schemas of the same tasks. The models are publicly available on the 🤗 HuggingFace Models Hub. The model name describes the configuration used for training as follows: <!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ --> <h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3> - `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>. - `NLI_datasets`: The NLI datasets used for pivot training. - `S`: Standford Natural Language Inference (SNLI) dataset. - `M`: Multi Natural Language Inference (MNLI) dataset. - `F`: Fever-nli dataset. - `A`: Adversarial Natural Language Inference (ANLI) dataset. - `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg. Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results. ## Training your own models There is no special script for fine-tuning your own entailment based models. In our experiments, we have used the publicly available [run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) python script (from HuggingFace Transformers). To train your own model, first, you will need to convert your actual dataset in some sort of NLI data, we recommend you to have a look to [tacred2mnli.py](https://github.com/osainz59/Ask2Transformers/blob/master/scripts/tacred2mnli.py) script that serves as an example. # Tutorials (Notebooks) **Coming soon!** # Results and evaluation To obtain the results reported in the papers run the [`evaluation.py`](./a2t/evaluation.py) script with the corresponding configuration [files](./resources/predefined_configs/). A configuration file containing the task and evaluation information should look like this: ```json { "name": "BabelDomains", "task_name": "topic-classification", "features_class": "a2t.tasks.text_classification.TopicClassificationFeatures", "hypothesis_template": "The domain of the sentence is about {label}.", "nli_models": [ "roberta-large-mnli" ], "labels": [ "Animals", "Art, architecture, and archaeology", "Biology", "Business, economics, and finance", "Chemistry and mineralogy", "Computing", "Culture and society", ... "Royalty and nobility", "Sport and recreation", "Textile and clothing", "Transport and travel", "Warfare and defense" ], "preprocess_labels": true, "dataset": "babeldomains", "test_path": "data/babeldomains.domain.gloss.tsv", "use_cuda": true, "half": true } ``` Consider reading the papers to access the results. # About legacy code The old code of this repository has been moved to [`a2t.legacy`](./a2t/legacy/) module and is only intended to be use for experimental reproducibility. Please, consider moving to the new code. If you need help read the new [documentation](https://osainz59.github.io/Ask2Transformers) or post an Issue on GitHub. # Citation Cite this paper if you want to cite stuff related to Relation Extraction, etc. ```bibtex @inproceedings{sainz-etal-2021-label, title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction", author = "Sainz, Oscar and Lopez de Lacalle, Oier and Labaka, Gorka and Barrena, Ander and Agirre, Eneko", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.92", pages = "1199--1212", abstract = "Relation extraction systems require large amounts of labeled examples which are costly to annotate. In this work we reformulate relation extraction as an entailment task, with simple, hand-made, verbalizations of relations produced in less than 15 min per relation. The system relies on a pretrained textual entailment engine which is run as-is (no training examples, zero-shot) or further fine-tuned on labeled examples (few-shot or fully trained). In our experiments on TACRED we attain 63{\%} F1 zero-shot, 69{\%} with 16 examples per relation (17{\%} points better than the best supervised system on the same conditions), and only 4 points short to the state-of-the-art (which uses 20 times more training data). We also show that the performance can be improved significantly with larger entailment models, up to 12 points in zero-shot, allowing to report the best results to date on TACRED when fully trained. The analysis shows that our few-shot systems are specially effective when discriminating between relations, and that the performance difference in low data regimes comes mainly from identifying no-relation cases.", } ``` Cite this paper if you want to cite stuff related with topic labelling (A2TDomains or our paper results). ```bibtex @inproceedings{sainz-rigau-2021-ask2transformers, title = "{A}sk2{T}ransformers: Zero-Shot Domain labelling with Pretrained Language Models", author = "Sainz, Oscar and Rigau, German", booktitle = "Proceedings of the 11th Global Wordnet Conference", month = jan, year = "2021", address = "University of South Africa (UNISA)", publisher = "Global Wordnet Association", url = "https://www.aclweb.org/anthology/2021.gwc-1.6", pages = "44--52", abstract = "In this paper we present a system that exploits different pre-trained Language Models for assigning domain labels to WordNet synsets without any kind of supervision. Furthermore, the system is not restricted to use a particular set of domain labels. We exploit the knowledge encoded within different off-the-shelf pre-trained Language Models and task formulations to infer the domain label of a particular WordNet definition. The proposed zero-shot system achieves a new state-of-the-art on the English dataset used in the evaluation.", } ```


نیازمندی

مقدار نام
- transformers
- tqdm
- torch
- numpy
- scikit-learn


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl a2t-0.4.0:

    pip install a2t-0.4.0.whl


نصب پکیج tar.gz a2t-0.4.0:

    pip install a2t-0.4.0.tar.gz