معرفی شرکت ها


a2ml-1.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A powerful API to Automate Machine Learning workflows from multiple vendors.
ویژگی مقدار
سیستم عامل -
نام فایل a2ml-1.0.9
نام a2ml
نسخه کتابخانه 1.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Auger AI
ایمیل نویسنده hello@auger.ai
آدرس صفحه اصلی https://a2ml.org
آدرس اینترنتی https://pypi.org/project/a2ml/
مجوز Apache License 2.0
# a2ml - Automation of AutoML [![CircleCI](https://img.shields.io/circleci/build/gh/augerai/a2ml/master)](https://circleci.com/gh/augerai/a2ml) [![Join the chat](https://img.shields.io/gitter/room/augerai/a2ml.svg)](https://gitter.im/augerai/a2ml) [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://raw.githubusercontent.com/augerai/a2ml/master/LICENSE) [![Python](https://img.shields.io/pypi/pyversions/a2ml.svg)](https://pypi.org/project/a2ml/) [![PyPI - A2ML Versions](https://img.shields.io/pypi/v/a2ml.svg)](https://pypi.org/project/a2ml/) The A2ML ("Automate AutoML") project is a Python API and set of command line tools to automate Automated Machine Learning tools from multiple vendors. The intention is to provide a common API for all Cloud-oriented AutoML vendors. Data scientists can then train their datasets against multiple AutoML models to get the best possible predictive model. May the best "algorithm/hyperparameter search" win. Full documentation for A2ML is available at [a2ml.org](http://a2ml.org) ## The PREDIT Pipeline Every AutoML vendor has their own API to manage the datasets and create and manage predictive models. They are similar but not identical APIs. But they share a common set of stages: * Importing data for training * Train models with multiple algorithms and hyperparameters * Evaluate model performance and choose one or more for deployment * Deploy selected models * Predict results with new data against deployed models * Review performance of deployed models Since ITEDPR is hard to remember we refer to this pipeline by its conveniently mnemonic anagram: "PREDIT" (French for "predict"). The A2ML project provides classes which implement this pipeline for various Cloud AutoML providers and a command line interface that invokes stages of the pipeline. ## Setup A2ML is distributed as a python package, so to install it: ```sh $ pip install -U a2ml ``` It will install Auger provider. To use Azure AutoML: ### Mac: ```sh $ brew install libomp ``` #### For Mac OS High Sierra and below: ```sh $ SKLEARN_NO_OPENMP=1 pip install "scikit-learn==0.21.3" $ pip install "a2ml[azure]" --ignore-installed onnxruntime onnx nimbusml ``` ### Linux: ```sh $ apt-get update && apt-get -y install gcc g++ libgomp1 ``` ```sh $ pip install "a2ml[azure]" ``` To use Google Cloud: ```sh $ pip install "a2ml[google]" ``` To install everything including testing and server code: ```sh $ pip install "a2ml[all]" ``` ## Development To release a new version the flow should be: 1. Change the `__version__` variable in `a2ml/__init__.py` to match what you want to release, minus the "v". By default it would be "<current-milestone>.dev0", for example "0.3.0.dev0". This ensures we don’t accidentally release a dev version to pypi.org. So for when we’re ready to release 0.3.0, the `__version__` variable should simply be "0.3.0". 2. Commit and push the changes above. ```sh git tag v<the-version> (for example: git tag v0.3.0) git push --tags ``` 3. verify circleci build passed and docker image tag exists: ```sh pip install -U a2ml==0.3.0 docker pull augerai/a2ml:v0.3.0 ``` 4. Increment the `__version__` variable in `a2ml/__init__.py` to the next version in the current milestone. For example, "0.3.1.dev0"


نیازمندی

مقدار نام
==1.23.5 numpy
==1.5.0 pandas
- joblib
- ruamel.yaml
- pyarrow
==1.9.1 scipy
- asyncio
- boto3
==0.7.4 auger-hub-api-client
- click
- shortuuid
<0.16,>=0.10 docutils
- requests
==6.2.0 smart-open
- jsonpickle
- websockets
==2.4.0 liac-arff
==1.2.0 xlrd
<=3.7.9,>=3.1.0 flake8
- mock
- pytest
- pytest-cov
- pytest-runner
- pytest-xdist
- twine
- vcrpy
<0.31.0,>=0.30.0 wheel
- sphinx
- aioredis
==5.2.7 celery
==0.85 fastapi
- gevent
- redis
<0.5.0,>=0.4.0 s3fs
- uvicorn
==1.2.0 scikit-learn
==1.29.0 azureml-sdk[automl]
- sphinx
- google-cloud-automl
==1.0.110 auger.ai.predict[all]
==1.0.110 auger.ai.predict[no_cat_lgbm]
==1.0.110 auger.ai.predict[no_cat_lgbm]
- catboost
- aioredis
==5.2.7 celery
==0.85 fastapi
- gevent
- redis
<0.5.0,>=0.4.0 s3fs
- uvicorn
==1.2.0 scikit-learn
<=3.7.9,>=3.1.0 flake8
- mock
- pytest
- pytest-cov
- pytest-runner
- pytest-xdist
- twine
- vcrpy
<0.31.0,>=0.30.0 wheel


نحوه نصب


نصب پکیج whl a2ml-1.0.9:

    pip install a2ml-1.0.9.whl


نصب پکیج tar.gz a2ml-1.0.9:

    pip install a2ml-1.0.9.tar.gz