معرفی شرکت ها


XBNet-1.4.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

XBNet is an open source project which is built with PyTorch that works as a Boosted neural network for tabular data
ویژگی مقدار
سیستم عامل OS Independent
نام فایل XBNet-1.4.6
نام XBNet
نسخه کتابخانه 1.4.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Tushar Sarkar
ایمیل نویسنده tushar.sarkar@somaiya.edu
آدرس صفحه اصلی https://github.com/tusharsarkar3/
آدرس اینترنتی https://pypi.org/project/XBNet/
مجوز MIT
# XBNet - Xtremely Boosted Network ## Boosted neural network for tabular data [![](https://img.shields.io/badge/Made_with-PyTorch-res?style=for-the-badge&logo=pytorch)](https://pytorch.org/ "PyTorch") [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/xbnet-an-extremely-boosted-neural-network/iris-classification-on-iris)](https://paperswithcode.com/sota/iris-classification-on-iris?p=xbnet-an-extremely-boosted-neural-network) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/xbnet-an-extremely-boosted-neural-network/diabetes-prediction-on-diabetes)](https://paperswithcode.com/sota/diabetes-prediction-on-diabetes?p=xbnet-an-extremely-boosted-neural-network) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/xbnet-an-extremely-boosted-neural-network/survival-prediction-on-titanic)](https://paperswithcode.com/sota/survival-prediction-on-titanic?p=xbnet-an-extremely-boosted-neural-network) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/xbnet-an-extremely-boosted-neural-network/breast-cancer-detection-on-breast-cancer-1)](https://paperswithcode.com/sota/breast-cancer-detection-on-breast-cancer-1?p=xbnet-an-extremely-boosted-neural-network) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/xbnet-an-extremely-boosted-neural-network/fraud-detection-on-kaggle-credit-card-fraud)](https://paperswithcode.com/sota/fraud-detection-on-kaggle-credit-card-fraud?p=xbnet-an-extremely-boosted-neural-network) XBNET that is built on PyTorch combines tree-based models with neural networks to create a robust architecture that is trained by using a novel optimization technique, Boosted Gradient Descent for Tabular Data which increases its interpretability and performance. Boosted Gradient Descent is initialized with the feature importance of a gradient boosted tree, and it updates the weights of each layer in the neural network in two steps: - Update weights by gradient descent. - Update weights by using feature importance of a gradient boosted tree in every intermediate layer. ## Features - Better performance, training stability and interpretability for tabular data. - Easy to implement with rapid prototyping capabilities - Minimum Code requirements for creating any neural network with or without boosting --- ### Comparison with XGBOOST XBNET VS XGBOOST testing accuracy on different datasets with no hyperparameter tuning | Dataset | XBNET | XGBOOST | | ---------------- | ---------------- | ---------------- | | Iris | <b>100</b> | 97.7 | | Breast Cancer | <b>96.49</b> | 96.47 | | Diabetes | <b>78.78</b> | 77.48 | | Titanic | 79.85 | <b>80.5</b> | | German Credit | 71.33 | <b>77.66</b> | --- ### Installation : ``` pip install --upgrade git+https://github.com/tusharsarkar3/XBNet.git ``` --- ### Example for using ``` import torch import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from XBNet.training_utils import training,predict from XBNet.models import XBNETClassifier from XBNet.run import run_XBNET data = pd.read_csv('test\Iris (1).csv') print(data.shape) x_data = data[data.columns[:-1]] print(x_data.shape) y_data = data[data.columns[-1]] le = LabelEncoder() y_data = np.array(le.fit_transform(y_data)) print(le.classes_) X_train,X_test,y_train,y_test = train_test_split(x_data.to_numpy(),y_data,test_size = 0.3,random_state = 0) model = XBNETClassifier(X_train,y_train,2) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) m,acc, lo, val_ac, val_lo = run_XBNET(X_train,X_test,y_train,y_test,model,criterion,optimizer,32,300) print(predict(m,x_data.to_numpy()[0,:])) ``` --- ### Output images ![](https://github.com/tusharsarkar3/XBNet/raw/master/screenshots/Results_metrics.png) ![](https://github.com/tusharsarkar3/XBNet/raw/master/screenshots/results_graph.png) --- ### Reference If you make use of this software for your work, we would appreciate it if you would cite us: ``` @misc{sarkar2021xbnet, title={XBNet : An Extremely Boosted Neural Network}, author={Tushar Sarkar}, year={2021}, eprint={2106.05239}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` --- #### Features to be added : - Metrics for different requirements - Addition of some other types of layers ---


نیازمندی

مقدار نام
==0.0 sklearn
==1.21.2 numpy
==1.3.3 pandas
==3.4.3 matplotlib
==1.9.0 torch
==1.4.2 xgboost
==4.62.2 tqdm


نحوه نصب


نصب پکیج whl XBNet-1.4.6:

    pip install XBNet-1.4.6.whl


نصب پکیج tar.gz XBNet-1.4.6:

    pip install XBNet-1.4.6.tar.gz