معرفی شرکت ها


UniformSumDistribution-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Implementation of the Irwin-Hall (the uniform sum) distribution
ویژگی مقدار
سیستم عامل OS Independent
نام فایل UniformSumDistribution-1.0.3
نام UniformSumDistribution
نسخه کتابخانه 1.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Artyom Zolotarevskiy
ایمیل نویسنده artyom@zolotarevskiy.com
آدرس صفحه اصلی https://github.com/artyom-zolotarevskiy/UniformSumDistribution
آدرس اینترنتی https://pypi.org/project/UniformSumDistribution/
مجوز MIT
UniformSumDistribution =========== A implementation of the Irwin-Hall (the uniform sum) distribution - https://randomservices.org/random/special/IrwinHall.html How to use ---------- Install it from pip (depends on scipy and numpy) ```python pip install UniformSumDistribution ``` The package provides one class called ``UniformSumDistribution``, which implements the distribution. ```python from UniformSumDistribution import UniformSumDistribution distribution = UniformSumDistribution(n) ``` the ``distribution`` object has methods: - ``rvs(size=1, *args, **kwds)`` - Random variates of given type. - ``pdf(x, *args, **kwds)`` - Probability density function at x of the given RV. - ``logpdf(x, *args, **kwds)`` - Log of the probability density function at x of the given RV. - ``cdf(x, *args, **kwds)`` - Cumulative distribution function of the given RV. - ``logcdf(x, *args, **kwds)`` - Log of the cumulative distribution function at x of the given RV. - ``sf(x, *args, **kwds)`` - Survival function (1 - cdf) at x of the given RV. - ``logsf(x, *args, **kwds)`` - Log of the survival function of the given RV. - ``ppf(q, *args, **kwds)`` - Percent point function (inverse of cdf) at q of the given RV. - ``isf(q, *args, **kwds)`` - Inverse survival function (inverse of sf) at q of the given RV. - ``moment(n, *args, **kwds)`` - n-th order non-central moment of distribution. - ``stats(*args, **kwds)`` - Some statistics of the given RV. - ``entropy(*args, **kwds)`` - Differential entropy of the RV. - ``expect([func, args, loc, scale, lb, ub, …])`` - Calculate expected value of a function with respect to the distribution by numerical integration. - ``median(*args, **kwds)`` - Median of the distribution. - ``mean(*args, **kwds)`` - Mean of the distribution. - ``std(*args, **kwds)`` - Standard deviation of the distribution. - ``var(*args, **kwds)`` - Variance of the distribution. - ``interval(alpha, *args, **kwds)`` - Confidence interval with equal areas around the median. - ``__call__(*args, **kwds)`` - Freeze the distribution for the given arguments. - ``fit(data, *args, **kwds)`` - Return estimates of shape (if applicable), location, and scale parameters from data. - ``fit_loc_scale(data, *args)`` - Estimate loc and scale parameters from data using 1st and 2nd moments. - ``nnlf(theta, x)`` - Negative loglikelihood function. - ``support(*args, **kwargs)`` - Support of the distribution. Read more - ``scipy.stats.rv_continuous`` - https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.html?highlight=rv_continuous - ``Continuous Statistical Distributions`` - https://docs.scipy.org/doc/scipy/tutorial/stats/continuous.html#continuous-distributions-in-scipy-stats Usage example ---------- ```python size = 8196 # Build PDF plt.figure(figsize=(10, 6)) for n in range(1, 14): distribution = UniformSumDistribution(n) start = distribution.ppf(0.0001) end = distribution.ppf(0.9999) x = np.linspace(start, end, size) y = distribution.pdf(x) pdf = pd.Series(y, x) ax = pdf.plot(kind = 'line', label = 'n=%s' % n, legend = True, lw = 2) ax.set_title('PDF') ``` ![the result of the code above](https://github.com/metrazlot/UniformSumDistribution/raw/main/pdf.png) ```python # Build CDF plt.figure(figsize=(10, 6)) for n in range(1, 14): distribution = UniformSumDistribution(n) start = distribution.ppf(0.0001) end = distribution.ppf(0.9999) x = np.linspace(start, end, size) y = distribution.cdf(x) cdf = pd.Series(y, x) ax = cdf.plot(kind = 'line', label = 'n=%s' % n, legend = True, lw = 2) ax.set_title('CDF') ``` ![the result of the code above](https://github.com/metrazlot/UniformSumDistribution/raw/main/cdf.png) ```python distribution = UniformSumDistribution(n = 2) mean, variance, skew, kurtosis = distribution.stats(moments = 'mvsk') mean, variance, skew, kurtosis ``` [out]: (array(1.), array(0.16666667), array(0.), array(-0.6)) ```python size = 5000 bins = 32 n = 2 distribution = UniformSumDistribution(n = n) # Get start and end points of distribution start = distribution.ppf(0.0001) end = distribution.ppf(0.9999) # Build PDF x = np.linspace(start, end, size) y = distribution.pdf(x) pdf = pd.Series(y, x) # Create random data rv = pd.Series(distribution.rvs(size = size)) # Get histogram of random data b = np.linspace(start, end, bins + 1) y, x = np.histogram(rv, bins = b, density = True) x = [(a + x[i + 1]) / 2.0 for i, a in enumerate(x[0:-1])] hist = pd.Series(y, x) w = abs(abs(hist.index[0]) - abs(hist.index[1])) plt.figure(figsize=(10, 6)) ax = pdf.plot(kind = 'line', label = 'PDF', legend = True, lw = 2, color = 'r') ax.bar(hist.index, hist.values, label = 'Random Sample', width = w, alpha = 0.5, color = 'c') legend = plt.legend() ``` ![the result of the code above](https://github.com/metrazlot/UniformSumDistribution/raw/main/histogram.png) License ------- Copyright (c) 2022 Artyom Zolotarevskiy. **UniformSumDistribution** is free software made available under the MIT License. For details see the LICENSE file. [![License MIT](http://img.shields.io/badge/license-MIT-green.svg?style=flat)](https://github.com/metrazlot/UniformSumDistribution/blob/main/LICENSE)


نیازمندی

مقدار نام
- numpy
- scipy


نحوه نصب


نصب پکیج whl UniformSumDistribution-1.0.3:

    pip install UniformSumDistribution-1.0.3.whl


نصب پکیج tar.gz UniformSumDistribution-1.0.3:

    pip install UniformSumDistribution-1.0.3.tar.gz