معرفی شرکت ها


TimeAxis-19.11.7.59750


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TimeAxis-19.11.7.59750
نام TimeAxis
نسخه کتابخانه 19.11.7.59750
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mohammad ABouali
ایمیل نویسنده maboualidev@gmail.com
آدرس صفحه اصلی https://github.com/maboualidev/TimeAxis
آدرس اینترنتی https://pypi.org/project/TimeAxis/
مجوز -
[![CircleCI](https://circleci.com/gh/maboualidev/TimeAxis.svg?style=svg)](https://circleci.com/gh/maboualidev/TimeAxis) [![codecov](https://codecov.io/gh/maboualidev/TimeAxis/branch/master/graph/badge.svg)](https://codecov.io/gh/maboualidev/TimeAxis) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3530859.svg)](https://doi.org/10.5281/zenodo.3530859) # TimeAxis Manages Time Axis and different operations related to time. Main focus is on Earth Science Data. The main goal of this package is to provide a unified mechanism to convert/transform date from time axis to another. For example, if your original data set is on a daily basis, and you want to convert it to weekly average, `TimeAxis` package would be handy. This package follows the same concept as in ESMF and SCRIPS. Although these two packages are for spatial coordinate interpolation, `TimeAxis`, obviously, deals with the time dimension of the data. It calculates a weight matrix stored as sparse matrix. Once you have the weights, any data field could be converted from the original time axis to the provided destination time axis. # How To Install ## using pip as usual, you could use `pip` installation as follows: ```shell script pip install timeaxis ``` # Examples: ## Daily data averaged to weekly In this example, first we create a daily time-axis of length 14 days, i.e. we just have 14 data points along the time axis: ```python from_axis = DailyTimeAxisBuilder( start_date=date(2019, 1, 1), n_interval=14 ).build() ``` Now we create a weekly time-axis of length 3, i.e. the time axis would have three elements with span of 3 weeks: ```python to_axis = WeeklyTimeAxisBuilder( start_date=date(2019, 1, 1), n_interval=3 ).build() ``` now we create a time axis converter object, as follows: ```python tc = TimeAxisConverter( from_time_axis=from_axis, to_time_axis=to_axis ) ``` Now we can use `tc` to convert data from the `from_axis` to `to_axis`, as follows: ```python to_data = tc.average(from_data) ``` the resulting `to_data` is the weekly average of the `from_data`. By default, we are assuming that the first dimension is the time dimension. If the time dimension is not the first dimension, you could define it as the following: ```python to_data = tc.average(from_data, time_dimension=n) ``` where `n` is the time dimension. # Rolling/moving weekly avarage You could easily calculate a rolling or moving average of your data. Here is an example: ```python from_axis = DailyTimeAxisBuilder( start_date=date(2019, 1, 1), n_interval=14 ).build() to_axis = RollingWindowTimeAxisBuilder( start_date=date(2019, 1, 1), end_date=date(2019, 1, 15), window_size=7 ).build() tc = TimeAxisConverter(from_time_axis=from_axis, to_time_axis=to_axis) to_data = tc.average(from_data) ``` as you can see, the only difference is the construction og the `to_axis`. In this example, we are building a rolling time axis that starts on `Jan. 1st, 2019` and ends on `Jan. 15th, 2019` with a window size of `7`. Since the base time delta, if not provided, is one day, our window is one week (`7 * 1day`). However, this is a rolling time axis, meaning that the next element on time axis is shifted only one day. Yes, the intervals in the time-axis overlap each other. ## Daily Averaged to Monthly ```python # Daily time axis spanning ten years. from_axis = DailyTimeAxisBuilder( start_date=date(2010, 1, 1), end_date=date(2020, 1, 1) ).build() # Monthly Time Axis spanning 10 years. to_axis = MonthlyTimeAxisBuilder( start_year=2010, end_year=2019, ).build() tc = TimeAxisConverter(from_time_axis=from_axis, to_time_axis=to_axis) monthly_avg = tc.average(daily_data) ``` if you do not provide any month, the start month is assumed to be the January and the end month is assumed to be the December. If you want to control that you could pass the `start_month` and/or `end_month` to change this behavior: ```python to_axis = MonthlyTimeAxisBuilder( start_year=2010, start_monnth=4, end_year=2019, end_month=10 ).build() ``` # Authors: - Abouali, Mohammad (maboualidev@gmail.com; mabouali@ucar.edu) - Banihirwe, Anderson (abanihi@ucar.edu) - Long, Matthew (mclong@ucar.edu)


نیازمندی

مقدار نام
- numpy
- cftime
- scipy
- numba


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl TimeAxis-19.11.7.59750:

    pip install TimeAxis-19.11.7.59750.whl


نصب پکیج tar.gz TimeAxis-19.11.7.59750:

    pip install TimeAxis-19.11.7.59750.tar.gz