معرفی شرکت ها


TensorClus-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

TensorClus is a Python package for clustering of three-way tensor data
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TensorClus-0.0.2
نام TensorClus
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Rafika Boutalbi,Mohamed Nadif, Lazhar Labiod
ایمیل نویسنده boutalbi.rafika@gmail.com
آدرس صفحه اصلی https://github.com/boutalbi/TensorClus
آدرس اینترنتی https://pypi.org/project/TensorClus/
مجوز BSD 3-Clause License
# TensorClus [![Documentation Status](https://readthedocs.org/projects/tensorclus/badge/?version=latest)](https://tensorclus.readthedocs.io/en/latest/?badge=latest) [![PyPI version](https://badge.fury.io/py/TensorClus.svg)](https://badge.fury.io/py/TensorClus) TensorClus (Tensor Clustering) is a first Python library aiming to clustering and co-clustering of tensor data. It allows to easily perform tensor clustering throught decomposition or tensor learning and tensor algebra. TensorClus allows easy interaction with other python packages such as NumPy, Tensorly, TensorFlow or TensorD, and run methods at scale on CPU or GPU. **It supports major operating systems namely Microsoft Windows, MacOS, and Ubuntu**. [![N|Solid](https://github.com/boutalbi/TensorClus/blob/master/BinaryTensorData.PNG?raw=true)](https://link.springer.com/article/10.1007/s41060-020-00205-5) - Source-code: https://github.com/boutalbi/TensorClus - Jupyter Notebooks: https://github.com/boutalbi/TensorClus/blob/master/demo_tensorClus.ipynb ### Brief description TensorClus library provides multiple functionalities: - Several datasets - Tensor co-clustering with various data type - Tensor decomposition and clustering - Visualization ### Requirements ```python numpy==1.18.3 pandas==1.0.3 scipy==1.4.1 matplotlib==3.0.3 scikit-learn==0.22.2.post1 coclust==0.2.1 tensorD==0.1 tensorflow==2.3.0 tensorflow-gpu==2.3.0 tensorflow-estimator==2.3.0 tensorly==0.4.5 ``` ### Installing TensorClus For installing TensorClus package use the following command ``` pip install -U TensorClus ``` To clone TensorClus project from github ``` # Install git LFS via https://www.atlassian.com/git/tutorials/git-lfs # initialize Git LFS git lfs install Git LFS initialized. git init Initialized # clone the repository git clone https://github.com/boutalbi/TensorClus.git cd TensorClus # Install in editable mode with `-e` or, equivalently, `--editable` pip install -e . ``` For more details about TensorClus, see [Documentation](https://tensorclus.readthedocs.io/en/latest/). ### License TensorClus is released under the MIT License (refer to LISENSE file for details). ### Examples ```python import TensorClus.coclustering.sparseTensorCoclustering as tcSCoP from TensorClus.reader import load import numpy as np from coclust.evaluation.external import accuracy ################################################################## # Load DBLP1 dataset # ################################################################## data_v2, labels, slices = load.load_dataset("DBLP1_dataset") n = data_v2.shape[0] ################################################################## # Execute TSPLBM on the dataset # ################################################################## # Define the number of clusters K K = 3 # Optional: initialization of rows and columns partitions z=np.zeros((n,K)) z_a=np.random.randint(K,size=n) z=np.zeros((n,K))+ 1.e-9 z[np.arange(n) , z_a]=1 w=np.asarray(z) # Run TSPLBM model = tcSCoP.SparseTensorCoclusteringPoisson(n_clusters=K , fuzzy = True,init_row=z, init_col=w,max_iter=50) model.fit(data_v2) predicted_row_labels = model.row_labels_ predicted_column_labels = model.column_labels_ acc = np.around(accuracy(labels, predicted_row_labels),3) print("Accuracy : ", acc) ``` ### Datasets The following datasets and their [description](https://github.com/boutalbi/TensorClus/blob/master/data_description.md) are available in Google Drive. - [DBLP1 dataset](https://shorturl.at/ayBG8) - [DBLP2 dataset](https://shorturl.at/fnt37) - [PubMed Diabets-4K dataset](https://shorturl.at/rDUY2) - [Nus-Wide-8 dataset](https://shorturl.at/abK17) <!--- ### Citing If you use TensorClus in an academic paper, please cite ``` @article{boutalbi2020tensor, title={Tensor latent block model for co-clustering}, author={Boutalbi, Rafika and Labiod, Lazhar and Nadif, Mohamed}, journal={International Journal of Data Science and Analytics}, pages={1--15}, year={2020}, publisher={Springer}, doi= {10.1007/s41060-020-00205-5}, url= "https://link.springer.com/article/10.1007/s41060-020-00205-5" } ``` --> ### References [1] Boutalbi, R., Labiod, L., & Nadif, M. (2020). Tensor latent block model for co-clustering. International Journal of Data Science and Analytics, 1-15. [2] Boutalbi, R., Labiod, L., & Nadif, M. (2019, July). Sparse Tensor Co-clustering as a Tool for Document Categorization. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1157-1160). [3] Boutalbi, R., Labiod, L., & Nadif, M. (2019, April). Co-clustering from Tensor Data. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 370-383). Springer.


نیازمندی

مقدار نام
>=19.0 pip
==1.17.4 numpy
==1.0.3 pandas
==1.2.1 scipy
==0.22.1 scikit-learn
==3.1.3 matplotlib
- coclust
==1.17.4 numpy
==1.0.3 pandas
==1.2.1 scipy
==0.22.1 scikit-learn
==3.1.3 matplotlib
- coclust
- tensorly


نحوه نصب


نصب پکیج whl TensorClus-0.0.2:

    pip install TensorClus-0.0.2.whl


نصب پکیج tar.gz TensorClus-0.0.2:

    pip install TensorClus-0.0.2.tar.gz