معرفی شرکت ها


TemporalGeneralizedRules-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Algorithms for association Rule mining
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TemporalGeneralizedRules-1.0.2
نام TemporalGeneralizedRules
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ignacio Fernandez y Emiliano Galimberti
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/TemporalGeneralizedRules/
مجوز MIT
## Temporal Generalized Association Rules This library provides four algorithms related to Association Rule mining. You can download this repository as a package with: pip install TemporalGeneralizedRules The algorithms are: - Apriori - Cumulate - HTAR - HTGAR These algorithms use a transactional dataset that is transformed to a vertical format for optimization. Dataset MUST follow the following format: | order_id | product_name | |----------|--------------| | 1 | Bread | | 1 | Milk | | 2 | Bread | | 2 | Beer | | 3 | Eggs | Or if timestamps are provided: | order_id | timestamp | product_name | |----------|-----------|--------------| | 1 | 852087600 | Bread | | 1 | 852087600 | Milk | | 2 | 854420400 | Bread | | 2 | 854420400 | Beer | | 3 | 854420400 | Eggs | For taxonomy file use the following format (don't provide headers): | child | parent | |----------|--------------| | Bread | Dairy | | Milk | Dairy | | Beer | Beverage | One line for each child, parent Each field is separated by "," ## TGAR This is the main class that must be instantiated once. ### Usage import TemporalGeneralizedRules tgar = TemporalGeneralizedRules.TGAR() ## Apriori This algorithm has four parameters: - filepath: Filepath of the dataset in csv format with the format discussed in the previous section. - min_supp: Minimum support threshold. - min_conf: Minimum confidence threshold. - parallel_count: Optional parameter that enables parallelization in candidate count phase of the algorithm. ### Usage tgar.apriori("dataset.csv", 0.05, 0.5) ## Cumulate This algorithm has six parameters: - filepath: Filepath of the dataset in csv format with the format discussed in the previous section. - taxonomy_filepath: Filepath of the taxonomy in csv format with the format discussed in the previous section. - min_supp: Minimum support threshold. - min_conf: Minimum confidence threshold. - min_r: Minimum R-interesting threshold. - parallel_count: Optional parameter that enables parallelization in candidate count phase of the algorithm. It can make execution faster. ### Usage tgar.cumulate("dataset.csv", 0.05, 0.5, 1.1) ## HTAR This algorithm has four parameters: - filepath: Filepath of the dataset in csv format with the format discussed in the previous section. - min_supp: Minimum support threshold. - min_conf: Minimum confidence threshold. - parallel_count: Optional parameter that enables parallelization in candidate count phase of the algorithm. It can make execution faster. ### Usage tgar.htar("dataset.csv", 0.05, 0.5) ## HTGAR This algorithm has six parameters: - filepath: Filepath of the dataset in csv format with the format discussed in the previous section. - taxonomy_filepath: Filepath of the taxonomy in csv format with the format discussed in the previous section. - min_supp: Minimum support threshold. - min_conf: Minimum confidence threshold. - min_r: Minimum R-interesting threshold. - parallel_count: Optional parameter that enables parallelization in candidate count phase of the algorithm. It can make execution faster. ### Usage tgar.htgar("dataset.csv", 0.05, 0.5, 1.1) ## Pypy For a better performance we recommend using this package with Pypy, a faster implementation of python. https://www.pypy.org/ ## Bibliography The algorithms provided in this library were based on the following papers: - Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB '94). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 487–499. https://dl.acm.org/doi/10.5555/645920.672836 - Ramakrishnan Srikant, Rakesh Agrawal, Mining generalized association rules, Future Generation Computer Systems, Volume 13, Issues 2–3, 1997, Pages 161-180, ISSN 0167-739X. https://www.sciencedirect.com/science/article/pii/S0167739X97000198 - R. Agrawal and J. C. Shafer, "Parallel mining of association rules," in IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962-969, Dec. 1996, doi: 10.1109/69.553164. https://ieeexplore.ieee.org/document/553164 - Hong et al., 2016.Hong, T.-P., Lan, G.-C., Su, J.-H., Wu, P.-S., and Wang, S.-L. (2016). Discovery of temporal association rules with hierarchical granular framework. Applied Computing and Informatics, 12(2):134–141 https://www.sciencedirect.com/science/article/pii/S2210832716000041


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl TemporalGeneralizedRules-1.0.2:

    pip install TemporalGeneralizedRules-1.0.2.whl


نصب پکیج tar.gz TemporalGeneralizedRules-1.0.2:

    pip install TemporalGeneralizedRules-1.0.2.tar.gz