معرفی شرکت ها


TakeMessageCleaner-1.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

TakeMessageCleaner is a tool for pre processing messages
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TakeMessageCleaner-1.1.4
نام TakeMessageCleaner
نسخه کتابخانه 1.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Karina Tiemi Kato
ایمیل نویسنده karinatkato@gmail.com
آدرس صفحه اصلی https://github.com/karinatk/TakeMessageCleaner
آدرس اینترنتی https://pypi.org/project/TakeMessageCleaner/
مجوز -
# TakeMessageCleaner TakeMessageCleaner is a tool for pre processing messages. It can be used to convert messages to lower case, correct spelling, remove elements like punctuation, emoji, whatapp's emoji, accentuation, number, cpf, url, e-mail, money, code, time, date and small talks. Also, it can pre process data from a dataframe, series, list or csv file. #### MessageCleaner.from_dataframe: creates a constructor from a dataframe <ul> <li>config_file_path: str</li> config_file_path is the path of the json file with the configuration <li>dataframe: pd.core.frame.DataFrame</li> dataframe is the pandas dataframe that needs to be processed. <li>content_column : str</li> content_column is the column name of the dataframe that has the information to be processed. </ul> #### MessageCleaner.from_series: creates a constructor from a series <ul> <li>config_file_path: str</li> config_file_path is the path of the json file with the pre processing <li>series: pd.core.frame.Series</li> series is the pandas series that needs to be processed. #### MessageCleaner.from_list: creates a constructor from a list <ul> <li>config_file_path: str</li> config_file_path is the path of the json file with the configuration <li>lst: list</li> lst is the list of string that need to be processed. </ul> #### MessageCleaner.from_file: creates a constructor from a csv file file_path : str, content_column : str = 'Content', encoding: str = 'utf-8', sep: str = ';' <ul> <li>config_file_path: str</li> config_file_path is the path of the json file with the configuration <li>file_path : strt</li> file_path is the path of the csv file that needs to be processed. <li>content_column: str</li> content_column is the column name of the dataframe that has the information to be processed. If the file separator is not set, the value 'Content' will be used. <li>sep: str</li> sep is the csv file separator. If the file separator is not set, the value ';' will be used. <li>encoding: str</li> encoding is the encoding of the csv file. If the file encoding is not set, the value 'utf-8' will be used. </ul> #### MessageCleaner.pre_process: pre-process messages using a json file with the configuration. The pre processing step is able to convert sentences to lower case, correct spelling and remove elements like punctuation, emoji, whatapp emoji, accentuation, number, cpf, url, e-mail, money, code, time, date and small talks. Optionally, you can activate use_placeholder to insert a placeholder where the element was removed. For example: "I want 2 apples" would be converted in "I want NUMBER apples". ## config.json ``` { "use_placeholder": true, "verbose": true, "processing": { "lower": true, "punctuation": true, "emoji": true, "wa_emoji": true, "accentuation": true, "number": true, "cpf": true, "url": true, "email": true, "money": true, "code": true, "time": true, "date": true, "spelling": true }, "output": { "file_name": "output_file.csv", "file_encoding" : "utf-8", "file_sep": ";", "remove_duplicates": true, "remove_empty": true, "sort_by_length": true } } ``` ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install TakeMessageCleaner ```bash pip install TakeMessageCleaner ``` ## Usage ```python import MessageCleaner as mc cleaner = mc.MessageCleaner.from_file(config_file_path = 'C:/Documents/config.json', file_path = 'C:/Users/mydata.csv', sep = ';', encoding = 'latin-1') result = cleaner.clean() print(result) ``` ## Author Karina Tiemi Kato ## License [MIT](https://choosealicense.com/licenses/mit/)


نیازمندی

مقدار نام
==2.21.0 requests
==0.5.1 emoji
==1.0.23 Unidecode
==40.2.0 setuptools
- pandas
- numpy


نحوه نصب


نصب پکیج whl TakeMessageCleaner-1.1.4:

    pip install TakeMessageCleaner-1.1.4.whl


نصب پکیج tar.gz TakeMessageCleaner-1.1.4:

    pip install TakeMessageCleaner-1.1.4.tar.gz