معرفی شرکت ها


TakeBlipMessageStructurer-0.0.2b2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Message Structurer Package
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TakeBlipMessageStructurer-0.0.2b2
نام TakeBlipMessageStructurer
نسخه کتابخانه 0.0.2b2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Data and Analytics Research
ایمیل نویسنده analytics.dar@take.net
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/TakeBlipMessageStructurer/
مجوز -
# TakeBlipMessageStructurer Package _Data & Analytics Research_ ## Overview Message Structurer is an AI model capable of assisting in structuring text messages. For each message sent, a list is obtained with the main elements found in the analyzed sentence. The elements found can be more than one word and have the following components: - **value**: sequence of characters found in the sentence corresponding to the element - **lowercase**: is the value found previously in lower case - **postags**: element grammar class - **type**: type of element found (class of entity found or postagging) Here are presented these content: ## Run To run the Message Structurer is possible in two ways: for a single sentence e for a batch of sentences. ### Single Sentence To predict a single sentence, the method **predict_line** should be used. Example of initialization e usage: 1) Import main packages; 2) Initialize model variables; 3) Read PosTagging, NER model and embedding model; 4) Initialize and usage. An example of the above steps could be found in the python code below: 1) Import main packages: ``` import json import torch from TakeBlipNer.predict import NerPredict from TakeBlipPosTagger.predict import PosTaggerPredict from TakeBlipMessageStructurer.utils import load_fasttext_embeddings from TakeBlipMessageStructurer.predict.messagestructurer import MessageStructurer ``` 2) Initialize model variables: In order to predict the sentences tags, the following variables should be created: - **postag_model_path**: string with the path of PosTagging pickle model; - **postag_label_path**: string with the path of PosTagging pickle labels; - **ner_model_path**: string with the path of NER pickle model; - **ner_label_path**: string with the path of NER pickle labels; - **wordembed_path**: string with FastText embedding files; - **padding_string**: string which represents the pad token; - **unknown_string**: a string which represents unknown token; - **sentence**: string with sentence to be structured. Example of variables creation: ``` postag_model_path = '*.pkl' postag_label_path = '*.pkl' ner_label_path = '*.pkl' ner_model_path = '*.pkl' wordembed_path = '*.kv' padding_string = '<pad>' unk_string = '<unk>' sentence = 'SENTENCE EXAMPLE TO PREDICT' ``` 3) Read Embedding, PosTagging and NER model: ``` embedding_model = load_fasttext_embeddings(embedding_path, pad_string) postagging_model = torch.load(postag_model_path) postag_predicter = PosTaggerPredict( model=postagging_model, label_path=postag_label_path, embedding=embedding_model) ner_model = torch.load(ner_model_path) ner_predicter = NerPredict( pad_string=pad_string, unk_string=unk_string, model=ner_model, postag_model=postag_predicter, label_path=ner_label_path) ``` 4) Initialize tags to be removed, Message Structurer and usage: ``` tags = ['INT', 'ART', 'PRON', 'SIMB', 'PON', 'CONJ'] message_structurer = MessageStructurer(ner_model=ner_predicter) print(message_structurer.structure_message(sentence, tags)) ``` ### Batch To predict a single sentence, the method **predict_line** should be used. Example of initialization e usage: 1) Import main packages; 2) Initialize model variables; 3) Read PosTagging, NER model and embedding model; 4) Read file to be structured; 5) Initialize and usage; 6) Package usage. An example of the above steps could be found in the python code below: 1) Import main packages: ``` import json import torch from TakeBlipNer.predict import NerPredict from TakeBlipPosTagger.predict import PosTaggerPredict from TakeBlipMessageStructurer.utils import load_fasttext_embeddings from TakeBlipMessageStructurer.predict.messagestructurer import MessageStructurer ``` 2) Initialize model variables: In order to predict the sentences tags, the following variables should be created: - **postag_model_path**: string with the path of PosTagging pickle model; - **postag_label_path**: string with the path of PosTagging pickle labels; - **ner_model_path**: string with the path of NER pickle model; - **ner_label_path**: string with the path of NER pickle labels; - **wordembed_path**: string with FastText embedding files; - **padding_string**: string which represents the pad token; - **unknown_string**: a string which represents unknown token. Example of variables creation: ``` postag_model_path = '*.pkl' postag_label_path = '*.pkl' ner_label_path = '*.pkl' ner_model_path = '*.pkl' wordembed_path = '*.kv' padding_string = '<pad>' unk_string = '<unk>' ``` 3) Read Embedding, PosTagging and NER model: ``` embedding_model = load_fasttext_embeddings(embedding_path, pad_string) postagging_model = torch.load(postag_model_path) postag_predicter = PosTaggerPredict( model=postagging_model, label_path=postag_label_path, embedding=embedding_model) ner_model = torch.load(ner_model_path) ner_predicter = NerPredict( pad_string=pad_string, unk_string=unk_string, model=ner_model, postag_model=postag_predicter, label_path=ner_label_path) ``` 4) Read file to be structured: - In order to predict a batch, will need a json file as follows: ``` { "sentences": [ { "id": 1, "sentence": "sentence_1" }, { "id": 2, "sentence": "sentence_2" } ] } ``` - Reading json file: ``` file = open(path_sentences) sentence = json.load(file)['Sentences'] ``` 5) Initialize tags to be removed and Message Structurer: ``` tags = ['INT', 'ART', 'PRON', 'SIMB', 'PON', 'CONJ'] message_structurer = MessageStructurer(ner_model=ner_predicter) ``` 6) Package usage - In order to use the package, some variables should be initialized: - **input_path**: a string with path of the .csv file; - **batch_size**: number of sentences which will be predicted at the same time; - **shuffle**: a boolean representing if the dataset is shuffled; - **use_pre_processing**: a boolean indicating if sentence will be preprocessed; Example of variable creations: ``` path_sentences = '*.json' batch_size = 64 shuffle = True use_pre_processing = True ``` - Structuring a batch of sentences: ``` print(messagestructurer.structure_message_batch( batch_size=batch_size, shuffle=shuffle, use_pre_processing=use_pre_processing, sentences=sentence, tags_to_remove=tags)) ```


نیازمندی

مقدار نام
- pyaap
- tqdm
==3.8.3 gensim
==1.0.1 TakeSentenceTokenizer
==1.0.4 TakeBlipPosTagger
==0.0.4 TakeBlipNer
- tensorboard


نحوه نصب


نصب پکیج whl TakeBlipMessageStructurer-0.0.2b2:

    pip install TakeBlipMessageStructurer-0.0.2b2.whl


نصب پکیج tar.gz TakeBlipMessageStructurer-0.0.2b2:

    pip install TakeBlipMessageStructurer-0.0.2b2.tar.gz