معرفی شرکت ها


TakeBlipInsightExtractor-0.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Insight Extractor Package
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TakeBlipInsightExtractor-0.0.3
نام TakeBlipInsightExtractor
نسخه کتابخانه 0.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Data and Analytics Research
ایمیل نویسنده analytics.dar@take.net
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/TakeBlipInsightExtractor/
مجوز -
# TakeBlipInsightExtractor Package _Data & Analytics Research_ ## Overview Here is presented these content: * Intro * Run * Example of initialization and usage ## Intro The Insight Extractor offers a way to analyze huge volumes of textual data in order to identify, cluster and detail subjects. This project achieves this results by way of applying a proprietary Named Entity Recognition (NER) algorithm followed by a clustering algorithm. The IE Cloud also allows any person to use this tool without having too many computational resources available to themselves. The package outputs four types of files: - **Wordcloud**: It's an image file containing a wordcloud describing the most frequent subjects on the text. The colours represent the groups of similar subjects. - **Wordtree**: It's an html file which contains the graphic relationship between the subjects and the examples of uses in sentences. It's an interactive graphic where the user can navigate along the tree. - **Hierarchy**: It's a json file which contains the hierarchical relationship between subjects. - **Table**: It's a csv file containing the following columns: - **Message**: Original message; - **Entities**: Entities found in original message; - **Groups**: Entity groups found; - **Structured Message**: Relevant content (structured message). ### Parameters The following parameters need to be set by the user on the command line: - **embedding_path**: path to the embedding model, the file should end with .kv; - **postagging_model_path**: path to the postagging model, the file should end with .pkl; - **postagging_label_path**: path to the postagging label file, the file should end with .pkl; - **ner_model_path**: path to the ner model, the file should end with .pkl; - **ner_label_path**: path to the ner label file, the file should end with .pkl; - **file**: path to the csv file the user wants to analyze; - **user_email**: user's Take Blip email where they want to receive the analysis; - **bot_name**: bot ID. The following parameters have default settings, but can be customized by the user; - **node_messages_examples**: it is an int representing the number of examples outputed for each subject on the Wordtree file. The default value is 100; - **similarity_threshold**: it is a float representing the similarity threshold between the subject groups. The default value is 0.65, we recommend that this parameter not be modified; - **percentage_threshold**: it is a float representing the frequency percentile of subject from which they are not removed from the analysis. The default value is 0.9; - **batch_size**: it is an int representing the batch size. The default value is 50; - **chunk_size**: it is an int representing chunk file size for upload in storaged. The default value is 1024; - **separator**: it is a str for the csv file delimiter character. The default value is '|'. ## Example of initialization e usage: 1) Import main packages; 2) Initialize main variables; 3) Initialize eventhub logger; 4) Initialize Insight Extractor; 5) Insight Extractor usage. An example of the above steps could be found in the python code below: - Import main packages ``` import uuid from TakeBlipInsightExtractor.insight_extractor import InsightExtractor from TakeBlipInsightExtractor.outputs.eventhub_log_sender import EventHubLogSender ``` - Initialize main variables ``` embedding_path = '*.kv' postag_model_path = '*.pkl' postag_label_path = '*.pkl' ner_model_path = '*.pkl' ner_label_path = '*.pkl' user_email = 'your_email@host.com' bot_name = 'my_bot_for_insight_extractor' application_name = 'your application' eventhub_name = '*' eventhub_connection_string = '*' file_name = '*' input_data = '*.csv' separator = '|' similarity_threshold = 0.65 node_messages_examples = 100 batch_size = 1024 percentage_threshold = 0.7 ``` - Initialize eventhub logger ``` correlation_id = str(uuid.uuid3(uuid.NAMESPACE_DNS, user_email + bot_name)) logger = EventHubLogSender(application_name=application_name, user_email=user_email, bot_name=bot_name, file_name=file_name, correlation_id=correlation_id, connection_string=eventhub_connection_string, eventhub_name=eventhub_name) ``` - Initialize Insight Extractor ``` insight_extractor = InsightExtractor(input_data, separator=separator, similarity_threshold=similarity_threshold, embedding_path=embedding_path, postagging_model_path=postag_model_path, postagging_label_path=postag_label_path, ner_model_path=ner_model_path, ner_label_path=ner_label_path, user_email=user_email, bot_name=bot_name, logger=logger) ``` - Insight Extractor usage ``` insight_extractor.predict(percentage_threshold=percentage_threshold, node_messages_examples=node_messages_examples, batch_size=batch_size) ```


نیازمندی

مقدار نام
- azure-eventhub
- azure-storage-blob
- wordcloud
- matplotlib
- numpy
- scikit-learn
- pyaap
==3.8.3 gensim
==1.0.1 TakeSentenceTokenizer
- azureml-contrib-services
- requests-toolbelt


نحوه نصب


نصب پکیج whl TakeBlipInsightExtractor-0.0.3:

    pip install TakeBlipInsightExtractor-0.0.3.whl


نصب پکیج tar.gz TakeBlipInsightExtractor-0.0.3:

    pip install TakeBlipInsightExtractor-0.0.3.tar.gz