معرفی شرکت ها


TAMPPA-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Time And Memory Profile Parser
ویژگی مقدار
سیستم عامل OS Independent
نام فایل TAMPPA-0.0.1
نام TAMPPA
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Prashant Dandriyal
ایمیل نویسنده prashantdandriyal7@gmail.com
آدرس صفحه اصلی https://github.com/pra-dan/TAMPPA
آدرس اینترنتی https://pypi.org/project/TAMPPA/
مجوز MPL
# TAMPPA: Time And Memory Profile PArser --- > As a maiden attampt, I hope to make it super useful for the community. Please report bugs and make pull requests to improve it. --- ## Introduction: TAMPPA is a supporting package for the popular profilers * [line_profiler and kernprof](https://github.com/pyutils/line_profiler/blob/master/README.rst), and * [memory_profiler](https://github.com/pythonprofilers/memory_profiler) Both the packages do an excellent job by providing profiling results on the terminal. ```python3 Total time: 0.181071 s File: main.py Function: linearRegressionfit at line 35 Line # Hits Time Per Hit % Time Line Contents ============================================================== 35 @profile 36 def linearRegressionfit(Xt,Yt,Xts,Yts): 37 1 52.0 52.0 0.1 lr=LinearRegression() 38 1 28942.0 28942.0 75.2 model=lr.fit(Xt,Yt) 39 1 1347.0 1347.0 3.5 predict=lr.predict(Xts) 40 41 1 4924.0 4924.0 12.8 print("train Accuracy",lr.score(Xt,Yt)) 42 1 3242.0 3242.0 8.4 print("test Accuracy",lr.score(Xts,Yts)) ``` But, there seems to be no method to get these stats in a exportable file that can be used with flexibility. On dumping the logs to a `.txt` file still requires an individual to parse data from the text by self and then convert the content into a `.csv` file; which is a common format for sharing statistical data and plotting using MATPLOTLIB. This is exactly what **TAMPPA** does ! It outputs one `.csv` file per function and another text file `func_names.txt` and `again_func_names.txt` for accessing these files easily. ## Pre-requisites: **Note: Both the parsers need a .txt file to parse results from** * Run both the profilers or the profiler whose results you need as a `csv`, and save the logs on the console to a `.txt` file. For e.g saving the memory profiling results of the python application `mainm.py` and saving the results to `mem_res_1.txt` ```python3 $ python -m memory_profiler mainm.py > mem_res_1.txt ``` * Avoid printing anything on the console. Try it with `python main.py` and nothing should be printed to the console. So, comment out all the print and log statements. ## Installation Any particular release can be installed using `pip`: ```python3 $ pip install tamppa ``` To enter development mode, ```python3 $ git clone https://github.com/pra-dan/TAMPPA.git ``` ## Usage Refer to the following once the Installation is over. ### Time Profile Parser Initially, if we have only the `.txt` file. ```python3 . └── tim_prof_results.txt 0 directories, 1 file ``` Run `tim_parse` or time parser, in a Python environment (`$ python`) ```python3 >>> from tamppa import tim_parse >>> tim_parse("tim_prof_results.txt") ``` On successful execution, the lonely directory is populated as ```python3 . ├── again_func_names.txt ├── import_data_tim_.csv ├── linearRegressionfit_tim_.csv ├── parse_data_tim_.csv ├── randForestRegressorfit_tim_.csv └── tim_prof_results.txt 0 directories, 6 files ``` Additionally, a plot is also generated as ![mem_res](https://github.com/pra-dan/TAMPPA/blob/master/resources/tim_res.png) ### Memory Profile Parser Similarly, if we have only the `.txt` file for the `memory_profiler`. ```python3 . └── mem_res_1.txt 0 directories, 1 file ``` Run `mem_parse` or time parser, in a Python environment (`$ python`) ```python3 >>> from tamppa import mem_parse >>> mem_parse("mem_res_1.txt") ``` On successful execution, the lonely directory is populated as ```python3 . ├── func_names.txt ├── function_wise_time_results.csv ├── import_data_mem_.csv ├── linearRegressionfit_mem_.csv ├── mem_res_1.txt ├── parse_data_mem_.csv └── randForestRegressorfit_mem_.csv 0 directories, 7 files ``` Additionally, a plot is also generated as ![mem_res](https://github.com/pra-dan/TAMPPA/blob/master/resources/mem_res.png) ## TODOs: - [ ] (Provide the entire package a executable-like interface; such that the parsers can be called simply as `$ mem_parse file.txt -plot true`) - [ ] (Add flags to toggle plots for both parsers) ## References: * [Packaging Python Projects](https://packaging.python.org/tutorials/packaging-projects/) * [Jacob Tomlinson's Blogs](https://www.jacobtomlinson.co.uk/series/creating-an-open-source-python-project-from-scratch/)


نیازمندی

مقدار نام
- matplotlib
- pandas


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl TAMPPA-0.0.1:

    pip install TAMPPA-0.0.1.whl


نصب پکیج tar.gz TAMPPA-0.0.1:

    pip install TAMPPA-0.0.1.tar.gz