معرفی شرکت ها


SparseMatrixRecommender-0.1.8


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Sparse Matrix Recommender package based on SSparseMatrix objects.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل SparseMatrixRecommender-0.1.8
نام SparseMatrixRecommender
نسخه کتابخانه 0.1.8
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Anton Antonov
ایمیل نویسنده antononcube@posteo.net
آدرس صفحه اصلی https://github.com/antononcube/Python-packages/tree/main/SparseMatrixRecommender
آدرس اینترنتی https://pypi.org/project/SparseMatrixRecommender/
مجوز -
# Sparse Matrix Recommender (SMR) Python package ## Introduction This Python package, `SparseMatrixRecommender`, has different functions for computations of recommendations based on (user) profile or history using Sparse Linear Algebra (SLA). The package mirrors the Mathematica implementation [AAp1]. (There is also a corresponding implementation in R; see [AAp2]). The package is based on a certain "standard" Information retrieval paradigm -- it utilizes Latent Semantic Indexing (LSI) functions like IDF, TF-IDF, etc. Hence, the package also has document-term matrix creation functions and LSI application functions. I included them in the package since I wanted to minimize the external package dependencies. The package includes two data-sets `dfTitanic` and `dfMushroom` in order to make easier the writing of introductory examples and unit tests. For more theoretical description see the article ["Mapping Sparse Matrix Recommender to Streams Blending Recommender"](https://github.com/antononcube/MathematicaForPrediction/blob/master/Documentation/MappingSMRtoSBR/Mapping-Sparse-Matrix-Recommender-to-Streams-Blending-Recommender.pdf) , [AA1]. For detailed examples see the files ["SMR-experiments-large-data.py"](https://github.com/antononcube/Python-packages/blob/main/SparseMatrixRecommender/examples/SMR-experiments-large-data.py) and ["SMR-creation-from-long-form.py"](https://github.com/antononcube/Python-packages/blob/main/SparseMatrixRecommender/examples/SMR-creation-from-long-form.py). The list of features and its implementation status is given in the [org-mode](https://orgmode.org) file ["SparseMatrixRecommender-work-plan.org"](https://github.com/antononcube/Python-packages/blob/main/org/SparseMatrixRecommender-work-plan.org). ------ ## Workflows Here is a diagram that encompasses the workflows this package supports (or will support): ![SMR-workflows](https://github.com/antononcube/SimplifiedMachineLearningWorkflows-book/raw/master/Part-2-Monadic-Workflows/Diagrams/A-monad-for-Sparse-Matrix-Recommender-workflows/SMR-workflows.jpeg) Here is a diagram of typical pipeline building using a `SparseMatrixRecommender` object: ![SMRMon-pipeline-Python](https://github.com/antononcube/SimplifiedMachineLearningWorkflows-book/raw/master/Part-2-Monadic-Workflows/Diagrams/A-monad-for-Recommender-workflows/SMRMon-pipeline-Python.jpg) ------ ## Installation To install from GitHub use the shell command: ```shell python -m pip install git+https://github.com/antononcube/Python-packages.git#egg=SparseMatrixRecommender\&subdirectory=SparseMatrixRecommender ``` To install from [PyPI](https://pypi.org/project/SparseMatrixRecommender/): ```shell python -m pip install SparseMatrixRecommender ``` ------ ## Related Python packages This package is based on the Python package [`SSparseMatrix`](https://github.com/antononcube/Python-packages/tree/main/SSparseMatrix), [AAp5]. The package [LatentSemanticAnalyzer](https://github.com/antononcube/Python-packages/tree/main/LatentSemanticAnalyzer), [AAp6], uses the cross tabulation and LSI functions of this package. ------ ## Usage example Here is an example of an SMR pipeline for creation of a recommender over Titanic data and recommendations for the profile "passengerSex:male" and "passengerClass:1st": ```python from SparseMatrixRecommender.SparseMatrixRecommender import * from SparseMatrixRecommender.DataLoaders import * dfTitanic = load_titanic_data_frame() smrObj = (SparseMatrixRecommender() .create_from_wide_form(data = dfTitanic, item_column_name="id", columns=None, add_tag_types_to_column_names=True, tag_value_separator=":") .apply_term_weight_functions(global_weight_func = "IDF", local_weight_func = "None", normalizer_func = "Cosine") .recommend_by_profile(profile=["passengerSex:male", "passengerClass:1st"], nrecs=12) .join_across(data=dfTitanic, on="id") .echo_value()) ``` **Remark:** More examples can be found the directory ["./examples"](https://github.com/antononcube/Python-packages/tree/main/SparseMatrixRecommender/examples). ------ ## Related Mathematica packages The software monad Mathematica package ["MonadicSparseMatrixRecommender.m"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicSparseMatrixRecommender.m) [AAp1], provides recommendation pipelines similar to the pipelines created with this package. Here is a Mathematica monadic pipeline that corresponds to the Python pipeline above: ```mathematica smrObj = SMRMonUnit[]⟹ SMRMonCreate[dfTitanic, "id", "AddTagTypesToColumnNames" -> True, "TagValueSeparator" -> ":"]⟹ SMRMonApplyTermWeightFunctions["IDF", "None", "Cosine"]⟹ SMRMonRecommendByProfile[{"passengerSex:male", "passengerClass:1st"}, 12]⟹ SMRMonJoinAcross[dfTitanic, "id"]⟹ SMRMonEchoValue[]; ``` *(Compare the pipeline diagram above with the [corresponding diagram using Mathematica notation](https://github.com/antononcube/SimplifiedMachineLearningWorkflows-book/raw/master/Part-2-Monadic-Workflows/Diagrams/A-monad-for-Recommender-workflows/SMRMon-pipeline.jpeg) .)* ------ ## Related R packages The package [`SMRMon-R`](https://github.com/antononcube/R-packages/tree/master/SMRMon-R), [AAp2], implements a software monad for SMR workflows. Most of `SMRMon-R` functions delegate to `SparseMatrixRecommender`. The package [`SparseMatrixRecommenderInterfaces`](https://github.com/antononcube/R-packages/tree/master/SparseMatrixRecommenderInterfaces), [AAp3], provides functions for interactive [Shiny](https://shiny.rstudio.com) interfaces for the recommenders made with `SparseMatrixRecommender` and/or `SMRMon-R`. The package [`LSAMon-R`](https://github.com/antononcube/R-packages/tree/master/LSAMon-R), [AAp4], can be used to make matrices for `SparseMatrixRecommender` and/or `SMRMon-R`. Here is the `SMRMon-R` pipeline that corresponds to the Python pipeline above: ```r smrObj <- SMRMonCreate( data = dfTitanic, itemColumnName = "id", addTagTypesToColumnNamesQ = TRUE, sep = ":") %>% SMRMonApplyTermWeightFunctions(globalWeightFunction = "IDF", localWeightFunction = "None", normalizerFunction = "Cosine") %>% SMRMonRecommendByProfile( profile = c("passengerSex:male", "passengerClass:1st"), nrecs = 12) %>% SMRMonJoinAcross( data = dfTitanic, by = "id") %>% SMRMonEchoValue ``` ------ ## References ### Articles [AA1] Anton Antonov, ["Mapping Sparse Matrix Recommender to Streams Blending Recommender"](https://github.com/antononcube/MathematicaForPrediction/blob/master/Documentation/MappingSMRtoSBR/Mapping-Sparse-Matrix-Recommender-to-Streams-Blending-Recommender.pdf) (2017), [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction). ### Mathematica and R Packages [AAp1] Anton Antonov, [Monadic Sparse Matrix Recommender Mathematica package](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicSparseMatrixRecommender.m), (2018), [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction). [AAp2] Anton Antonov, [Sparse Matrix Recommender Monad in R](https://github.com/antononcube/R-packages/tree/master/SMRMon-R) (2019), [R-packages at GitHub/antononcube](https://github.com/antononcube/R-packages). [AAp3] Anton Antonov, [Sparse Matrix Recommender framework interface functions](https://github.com/antononcube/R-packages/tree/master/SparseMatrixRecommenderInterfaces) (2019), [R-packages at GitHub/antononcube](https://github.com/antononcube/R-packages). [AAp4] Anton Antonov, [Latent Semantic Analysis Monad in R](https://github.com/antononcube/R-packages/tree/master/LSAMon-R) (2019), [R-packages at GitHub/antononcube](https://github.com/antononcube/R-packages). ### Python packages [AAp5] Anton Antonov, [SSparseMatrix package in Python](https://github.com/antononcube/Python-packages/tree/master/SSparseMatrix) (2021), [Python-packages at GitHub/antononcube](https://github.com/antononcube/Python-packages). [AAp6] Anton Antonov, [LatentSemanticAnalyzer package in Python](https://github.com/antononcube/Python-packages/tree/main/LatentSemanticAnalyzer) (2021), [Python-packages at GitHub/antononcube](https://github.com/antononcube/Python-packages).


نیازمندی

مقدار نام
- numpy
- scipy
- SSparseMatrix
- pandas


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl SparseMatrixRecommender-0.1.8:

    pip install SparseMatrixRecommender-0.1.8.whl


نصب پکیج tar.gz SparseMatrixRecommender-0.1.8:

    pip install SparseMatrixRecommender-0.1.8.tar.gz