In order to install the package pip install it with in a python terminal.
In order to import the library simply on the top of the file import it as follows:
```
from SciProgPackage.ScientificProgramming import SciProg as sp
```
In order to run the different functions:
```
sp.NAMEOFTHEFUNCTION(attributes)
```
As an example:
```
dat = np.arange(1,11)
discrete_dat, cutoff = sp.atributeDiscretizeEF(dat, 3)
```
---------------------------------------------------------------------------------
Finally in order to run all the possible tests here is a code to test it:
```
# -*- coding: utf-8 -*-
import random
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
import collections
import math
import scipy
from numpy import genfromtxt
import pandas as pd
from SciProgPackage.ScientificProgramming import SciProg as sp
##TESTS
#TEST
print("TEST1")
print(" ")
print("atributeDiscretizeEF")
print("data:")
dat = np.arange(1,11)
print(dat)
print("RESULT:-------------------")
discrete_dat, cutoff = sp.atributeDiscretizeEF(dat, 3)
print("discrete_dat: ", discrete_dat)
print("cutoff: ", cutoff)
print("--------------------------")
print(" ")
print("TEST2")
print(" ")
#TEST
print("datasetDiscretizeEF")
print("data:")
data=np.random.randint(10,size=(10,10))
print(data)
print("RESULT:-------------------")
print(sp.datasetDiscretizeEF(data,5))
print("--------------------------")
print(" ")
print("TEST3")
print(" ")
#TEST
print("atributeDiscretizeEW")
print("data:")
dat = np.arange(1,11)
print(dat)
discrete_dat, cutoff = sp.atributeDiscretizeEW(dat, 3)
print("RESULT:-------------------")
print("discrete_dat: ", discrete_dat)
print("cutoff: ", cutoff)
print("--------------------------")
print(" ")
print("TEST4")
print(" ")
#TEST
data=np.random.rand(10,10)
print("datasetDiscretizeEW")
print("dat: ",data)
print("RESULT:-------------------")
print(sp.datasetDiscretizeEW(data,5))
print("--------------------------")
print(" ")
print("TEST5")
print(" ")
print("variance")
#TEST
print("data")
numberCol=np.random.rand(10)
print(numberCol)
print("RESULT:-------------------")
print(sp.variance(numberCol))
print("--------------------------")
print(" ")
print("TEST6")
print(" ")
print("auc")
print("data")
#TEST
numberCol=np.random.rand(10)
numberCol
boolCol=np.random.randint(0,2,size=10)
boolCol
print(numberCol)
print(boolCol)
result=sp.auc(numberCol,boolCol)
print("RESULT:-------------------")
print(result)
print("--------------------------")
print(" ")
print("TEST7")
print(" ")
print("datasetEntropy")
#TEST
numberCol=np.random.rand(10)
boolCol=np.random.randint(0,2,size=10)
data=np.column_stack((numberCol,boolCol))
print("data")
print(data)
print("RESULT:-------------------")
val=sp.datasetEntropy(data)
print(val)
print("--------------------------")
print(" ")
print("TEST8")
print(" ")
print("variableNormalization")
print("data:")
print(np.array([1,2,3,4,5,5,65,4,3]))
#TEST
print("RESULT:-------------------")
data=sp.variableNormalization(np.array([1,2,3,4,5,5,65,4,3]))
print(data)
print("--------------------------")
print(" ")
print("TEST9")
print(" ")
print("variableEstandarization")
print("data:")
print(np.array([1,2,3,4,5,5,65,4,3]))
#TEST
print("RESULT:-------------------")
data=sp.variableEstandarization(np.array([1,2,3,4,5,5,65,4,3]))
print(data)
print("--------------------------")
print(" ")
print("TEST10")
print(" ")
print("datasetNormalization")
#TEST
data=np.random.rand(10,10)
a=np.array([1,2,3,4,5,5,65,4,3])
b=np.array([3,2,6,4,99,5,25,42,1])
data=np.column_stack((a,b))
print("data:")
print(data)
print("RESULT:-------------------")
norm=sp.datasetNormalization(data.astype(float))
print(norm)
print("--------------------------")
print(" ")
print("TEST11")
print(" ")
print("datasetEstandarization")
#TEST
data=np.random.rand(10,10)
a=np.array([1,2,3,4,5,5,65,4,3])
b=np.array([3,2,6,4,99,5,25,42,1])
data=np.column_stack((a,b))
print("data:")
print(data)
print("RESULT:-------------------")
norm=sp.datasetEstandarization(data.astype(float))
print(norm)
print("--------------------------")
print(" ")
print("TEST12")
print(" ")
print("filterDataset")
#TEST
data=np.random.rand(10,10)
a=np.array([1,2,3,4,5,5,65,4,3])
b=np.array([1,2,3,4,5,56,65,4,3])
c=np.array([3,2,6,4,99,5,25,42,1])
data=np.column_stack((a,b,c))
print("data:")
print(data)
print("RESULT:-------------------")
val=sp.filterDataset(np.array(data.astype(float)),10000,"variance")
print(val)
print("--------------------------")
print(" ")
print("TEST13")
print(" ")
print("atributesCorrelation")
#TEST
data=np.random.rand(10,10)
a=np.array([1,2,3,4,5,5,65,4,3])
b=np.array([3,2,6,4,99,5,25,42,1])
b=np.array([3,4,4,4,9,5,25,42,1])
data=np.column_stack((a,b,c))
print("data:")
print(data)
print("RESULT:-------------------")
norm=sp.atributesCorrelation(data.astype(float))
print(norm)
print("--------------------------")
print(" ")
print("TEST14")
print(" ")
print("plotAUC")
#TEST
numberCol=np.random.rand(10)
boolCol=np.random.randint(0,2,size=10)
print("data:")
print(numberCol)
print("data:")
print(boolCol)
print("RESULT:-------------------")
result=sp.plotAUC(numberCol,boolCol)
print(result)
print("--------------------------")
print(" ")
print("TEST15")
print(" ")
print("plotMutualInformation")
data=np.random.rand(10,2)
print("data:")
print(data)
print("RESULT:-------------------")
print(sp.plotMutualInformation(data))
print("--------------------------")
print(" ")
print("TEST16")
print(" ")
print("datasetRead")
print("RESULT:-------------------")
data=sp.datasetRead('/content/myData.csv')
print(data)
print("--------------------------")
print("TEST17")
print(" ")
print("writeDatasetCSV")
data=np.random.rand(10,2)
print("data:")
print(data)
print("RESULT:-------------------")
print(sp.writeDatasetCSV(data,'newData.csv'))
print("--------------------------")
```