معرفی شرکت ها


SamplePairsGaussian-1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Sample pairs of particles according to a discrete Gaussian distrbution
ویژگی مقدار
سیستم عامل OS Independent
نام فایل SamplePairsGaussian-1.1
نام SamplePairsGaussian
نسخه کتابخانه 1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Oliver K. Ernst
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/smrfeld/sample-pairs-gaussian
آدرس اینترنتی https://pypi.org/project/SamplePairsGaussian/
مجوز GNU General Public License v3.0
# Sample pairs of particles according to a discrete Gaussian Python code to sample pairs of a given set of particles in n dims, where the probability for each pair is Gaussian <img src="examples/figures/sample_2d_counts.png" width="500"> ## Requirements Python 3 & Numpy. ## Installation and usage Use `pip`: ``` pip install samplePairsGaussian ``` or manually: ``` python setup.py install ``` and in your code: ``` from samplePairsGaussian import * ``` See also the [examples](examples) folder. ## Idea Given a set of `n` particles with positions in `d`-dimensional space denoted by `x_i` for `i=0,1,...,n`. We want to sample a pair of particles `i,j` where `i =/= j`, where the probability for sampling this pair is given by: ``` p(i,j) ~ exp( - |x_i - x_j|^2 / 2 sigma^2 ) ``` where we use `|x|` to denote the `L_2` norm, and `sigma` is some chosen standard deviation. This problem is easy to write down, but difficult to implement for large numbers of particles since it requires computing `N^2` distances. A further problem is that we may want to: 1. Add a particle. 2. Remove a particle. 3. Move a particle. In this case, not all distances are affected - these operations should be of order `N`. However, if we sample the discrete distribution by forming the CDF, we will need to recalculate it, which is expensive. Alternatively, if we use rejection sampling, we must have a good candidate (envelope) distribution such that the acceptance ratio is high. This library attempts to come up with the most efficient way to perform these operations in Python. A key way this library reduces computational cost is by introducing a cutoff for particle distances, where pairs of particles separated by a distance greater than the cutoff are not considered for sampling. It is natural to let this be some chosen multiple of the std. dev., i.e. `m*sigma` for some `m`. If we use rejection sampling where candidates are drawn from a uniform distribution, the acceptance ratio should be approximately `( sqrt(2 * pi) * sigma ) / ( 2 * m * sigma ) = 1.253 / m`. (in the first equation: the area of the Gaussian is `1`, divided by the area of the uniform distribution of width `2 * m * sigma` and height `1 / (sqrt(2 * pi) * sigma )`). In general, we avoid all use of for loops, and rely extensively on array operations using numpy. ### Multiple species Multiple species are also supported, where we have multiple species but want to draw two particles of the **same species** (two particles of any species can be done by simply ignoring the species labels). Specifically, the classes `ProbCalculatorMultiSpecies` and `SamplerMultiSpecies` implement this. ## Examples See the [examples](examples) folder.


نحوه نصب


نصب پکیج whl SamplePairsGaussian-1.1:

    pip install SamplePairsGaussian-1.1.whl


نصب پکیج tar.gz SamplePairsGaussian-1.1:

    pip install SamplePairsGaussian-1.1.tar.gz