معرفی شرکت ها


SamPytorchHelper-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Make pytorch implementation easy, so that one can focus on what is really important!!!!
ویژگی مقدار
سیستم عامل OS Independent
نام فایل SamPytorchHelper-0.1.0
نام SamPytorchHelper
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Soilihi Abderemane
ایمیل نویسنده Abderemane500@gmail.com
آدرس صفحه اصلی https://github.com/sams500/SamPytorchHelper
آدرس اینترنتی https://pypi.org/project/SamPytorchHelper/
مجوز -
# SamPytorchHelper A Pytorch package that can be used directly with pytorch and tensorboard to simplify the training process while improving the code readability. One no longer needs to explicitly write the training loop, saving the model and upload the training information to tensorboard. ## Installation Firstly, we need to install all the required libraries within the `requirements.txt` file. One way to do that is by pip installing the libraries using this command: ```commandline pip install -r ./requirements.txt ``` Secondly, install the `SamPytorchHelper` package from PyPI: ```commandline pip install SamPytorchHelper ``` When it is done, we can import the class form the package by: ```python from SamPytorchHelper.TorchHelper import TorchHelperClass ``` the `TorchHelper` module contains the `TorchHelperClass` that is used to train the network. ## TorchHelperClass description TorchHelperClass contains mainly 4 attributes and 2 methods. 1. **Attributes** ```python class TorchHelperClass: def __init__(self, model, loss_function, optimizer, comment='') ``` At initialization, the class should receive 4 arguments: the network, the loss function, the optimizer, and a comment string. The `comment` should contain the information needed when the trained model will be saved and when it will be displayed in tensorboard. It provides an extra-information to model for better identification. the `comment` string may include the hyperparameter values such as epoch, lr, batch, etc. 2. **Methods** The TorchHelperClass has mainly 2 methods: * *train_model:* ```python def train_model(self, train_dataloader, val_dataloader, num_epoch=50, iter_print=100): """ :param train_dataloader: training set :param val_dataloader: validation set :param num_epoch: the total number of epochs. default = 50 :param iter_print: indicate when to print the loss after how many iteration. default = 100 :return: current trained model """ ``` * *save_model:*: ```python def save_model(self, path): """ :param path: folder where to save the model :return: None """ ```` ## Example A complete example implementation can be found in `test` folder: * `data folder`: contains the FashionMNIST dataset downloaded using `torchvision` * `runs folder`: contains the information used by tensorboard. * `trained_models folder`: it has the trained model saved after training using the `save_model` method. * `test.py`: it used to test the 'TorchHelperClass', most importantly, it shows the steps on how we can use the package more efficiently to train our network: ```python ... # hyper-parameters parameters = dict( lr=[0.01, 0.001], batch=[32, 64, 128], shuffle=[True], epochs=[10, 20], momentum=[0.9] ) ... param_values = [v for v in parameters.values()] for id, (lr, batch, shuffle, epochs, momentum) in enumerate(product(*param_values)): print("Current Hyperparams id:", id+1) train_dataloader = DataLoader(train_data, batch_size=batch, shuffle=shuffle) test_dataloader = DataLoader(test_data, batch_size=batch, shuffle=False) net = Network() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=momentum) comment = f' epch={epochs} lr={lr} bch={batch}' helper = TorchHelperClass(model=net, loss_function=criterion, optimizer=optimizer, comment=comment) helper.train_model(train_dataloader, test_dataloader, epochs, 1000) helper.save_model('trained_models') print() ... ``` The `parameters` is dict containing all the different value of each hyper-parameters. It is used for network hyper-parameters tuning where each parameter can have one or a list of values. ## Results after running test.py ### From the Terminal ![terminal](./test/pic/terminal.jpg) ### From Tensorboard ![tensorboard](./test/pic/tensorboard.png) ![loss](./test/pic/loss.png) ![training](./test/pic/training.png) ![validation](./test/pic/validation.png )


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl SamPytorchHelper-0.1.0:

    pip install SamPytorchHelper-0.1.0.whl


نصب پکیج tar.gz SamPytorchHelper-0.1.0:

    pip install SamPytorchHelper-0.1.0.tar.gz