معرفی شرکت ها


SW-transformation-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A fast classifier for binary node classification in bipartite graphs
ویژگی مقدار
سیستم عامل OS Independent
نام فایل SW-transformation-0.0.2
نام SW-transformation
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Stiene Praet
ایمیل نویسنده stiene.praet@uantwerp.be
آدرس صفحه اصلی https://github.com/SPraet/SW-transformation
آدرس اینترنتی https://pypi.org/project/SW-transformation/
مجوز -
# SW-transformation The SW-transformation is a fast classifier for binary node classification in bipartite graphs ([Stankova et al., 2015]( https://hdl.handle.net/10067/1274850151162165141)). Bipartite graphs (or bigraphs), are defined by having two types of nodes such that edges only exist between nodes of the different type (see Fig. 1). ![title](https://github.com/SPraet/SW-transformation/blob/master/Bigraph.PNG) **Fig. 1: Bigraph, top node projection and bottom node projection (left), adjacency matrix representation of the bigraph (right)** (Stankova et al., 2015, p. 8). The SW-transformation combines the weighted-vote Relational Neighbor (wvRN) classifier with an aggregation function that sums the weights of the top nodes. The transformation optimally considers for each test instance only the weights of the neighboring top nodes multiplied by the number of training instances in that column which have a positive label (the positive neighbors of the node). The SW-transformation yields very fast run times and allows easy scaling of the method to big data sets of millions of nodes (Stankova et al., 2015). ## Installation Requirements: numpy ``` pip install numpy ``` To build and install on your local machine, download and unzip the repository and run from there: ``` python setup.py install ``` Or you can automatically download and install from the PyPI repository: ``` pip install SW-transformation ``` ## Usage The SW transformation can be used to calculate the probability of a node in a bipartite graph to belong to the positive class. Three top node weight functions are included: simple weight assignment, inverse degree and hyperbolic tangent. Users can also directly insert the top node weights, using their own weight function. **SW-transformation**(weight_function='tanh', weights=None) ### Parameters * weight_function : 'tanh', 'inverse', 'simple' or 'own' (default='tanh'). For 'own', the top node weights should be provided in weights * weights : array-like, shape (1, n_top_nodes). Vector containing the top node weights, where n_top_nodes is the number of top nodes. When weight_function is set at 'own', the top node weights should be provided here. ### Examples ``` from sklearn.model_selection import GridSearchCV import numpy as np import SW X = load_adjacency_matrix_here #sparse matrix y = load_node_labels_here custom = lambda X: np.ones((X.shape[1],)) # define custom weight function sw = SW.SW_transformation() parameters = {'weight_function':('tanh','inverse','simple',custom)} clf = GridSearchCV(sw, parameters, cv=5, scoring = 'roc_auc', verbose=3) clf.fit(X,y) ``` ### Methods * fit(X, y) - Fit the model according to the given training data. * predict_proba(X) - Probability estimates. X: sparse matrix, shape(n_bottom_nodes, n_top_nodes): the adjacency matrix (see Fig. 1, right) y: array_like, shape(n_bottom_nodes, 1): the binary class labels (0 for negative and 1 for positive instance) ## Authors and contributors Stiene Praet <stiene.praet@uantwerp.be> [ddvlamin](https://github.com/ddvlamin) ## License This project is licensed under the MIT License - see the [LICENSE.md](https://github.com/SPraet/SW-transformation/blob/master/LICENSE) file for details ## Acknowledgements Based on the work of Marija Stankova, David Martens and Foster Provost ## References Stankova, M., Martens, D., & Provost, F. (2015). Classification over bipartite graphs through projection. (Research paper / University of Antwerp. Faculty of Applied Economics ; 2015-001 D/2015/1169/001). Full text (open access): https://repository.uantwerpen.be/docman/irua/07acff/c5909d64.pdf


نحوه نصب


نصب پکیج whl SW-transformation-0.0.2:

    pip install SW-transformation-0.0.2.whl


نصب پکیج tar.gz SW-transformation-0.0.2:

    pip install SW-transformation-0.0.2.tar.gz