معرفی شرکت ها


SQLConstruct-0.2.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Functional approach to query database using SQLAlchemy
ویژگی مقدار
سیستم عامل OS Independent
نام فایل SQLConstruct-0.2.4
نام SQLConstruct
نسخه کتابخانه 0.2.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Vladimir Magamedov
ایمیل نویسنده vladimir@magamedov.com
آدرس صفحه اصلی https://github.com/vmagamedov/sqlconstruct
آدرس اینترنتی https://pypi.org/project/SQLConstruct/
مجوز BSD
============ SQLConstruct ============ `SQLConstruct` is a functional approach to query database using `SQLAlchemy` library. It was written to reach more speed without introducing unmaintainable and verbose code. On the contrary, code becomes simpler, so there are less chances of shooting yourself in the foot. Main problems it aims to solve: - ORM overhead in read-only ``SELECT`` queries; - Network traffic when loading unnecessary columns; - Code complexity; - N+1 problem. Final ===== You describe what you want to get from the database: .. code-block:: python from sqlconstruct import Construct, if_ product_struct = Construct({ 'name': Product.name, 'url': url_for_product.defn(Product), 'image_url': if_( Image.id, then_=url_for_image.defn(Image, 100, 100), else_=None, ), }) And you get it. `SQLConstruct` knows which columns you need and how transform them into suitable to use format: .. code-block:: python >>> product = ( ... session.query(product_struct) ... .outerjoin(Product.image) ... .first() ... ) ... >>> product.name 'Foo product' >>> product.url '/p1-foo-product.html' >>> product.image_url '//images.example.st/123-100x100-foo.jpg' Full story ========== Basic preparations: .. code-block:: python from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String, Text, ForeignKey from sqlalchemy.orm import Session, relationship, eagerload from sqlalchemy.ext.declarative import declarative_base engine = create_engine('sqlite://') Base = declarative_base() class Image(Base): __tablename__ = 'image' id = Column(Integer, primary_key=True) name = Column(String) class Product(Base): __tablename__ = 'product' id = Column(Integer, primary_key=True) name = Column(String) image_id = Column(Integer, ForeignKey(Image.id)) description = Column(Text) image = relationship(Image) Base.metadata.create_all(engine) session = Session(engine) session.add(Product(name='Foo product', image=Image(name='Foo.jpg'))) session.commit() def slugify(name): # very dumb implementation, just for an example return name.lower().replace(' ', '-') def url_for_product(product): return '/p{id}-{name}.html'.format( id=product.id, name=slugify(product.name), ) def url_for_image(image, width, height): return '//images.example.st/{id}-{width}x{height}-{name}'.format( id=image.id, width=width, height=height, name=slugify(image.name), ) Usual way: .. code-block:: python >>> product = ( ... session.query(Product) ... .options(eagerload(Product.image)) ... .first() ... ) ... >>> product.name u'Foo product' >>> url_for_product(product) '/p1-foo-product.html' >>> url_for_image(product.image, 100, 100) if product.image else None '//images.example.st/1-100x100-foo.jpg' Disadvantages: - ``description`` column isn't deferred, it will be loaded every time; - if you will mark ``description`` column as deferred, this can introduce N+1 problem somewhere else in your project; - if you forgot to ``eagerload`` ``Product.image`` you will also get N+1 problem; - you have to pass model instances as arguments everywhere in the project and this tends to code complexity, because you don't know how they will be used in the future; - model instances creation isn't cheap, CPU time grows with number of columns, even if they are all deferred. Initial solution: .. code-block:: python from sqlconstruct import Construct, apply_, if_ def url_for_product(product_id, product_name): return '/p{id}-{name}.html'.format( id=product_id, name=slugify(product_name), ) def url_for_image(image_id, image_name, width, height): return '//images.example.st/{id}-{width}x{height}-{name}'.format( id=image_id, width=width, height=height, name=slugify(image_name), ) product_struct = Construct({ 'name': Product.name, 'url': apply_(url_for_product, args=[Product.id, Product.name]), 'image_url': if_( Image.id, then_=apply_(url_for_image, args=[Image.id, Image.name, 100, 100]), else_=None, ), }) Usage: .. code-block:: python >>> product = ( ... session.query(product_struct) ... .outerjoin(Product.image) ... .first() ... ) ... >>> product.name u'Foo product' >>> product.url '/p1-foo-product.html' >>> product.image_url '//images.example.st/1-100x100-foo.jpg' Advantages: - you're loading only what you need, no extra network traffic, no need to defer/undefer columns; - ``url_for_product`` and ``url_for_image`` functions can't add complexity, because they are forced to define all needed columns as arguments; - you're working with precomputed values (urls in this example). Disadvantages: - code of functions is hard to refactor and reuse, because you should specify or pass all the arguments every time; - you should be careful with joins, because if you wouldn't specify them explicitly, `SQLAlchemy` will produce cartesian product of the tables (``SELECT ... FROM product, image WHERE ...``), which will return wrong results and hurt your performance. To address first disadvantage, `SQLConstruct` provides ``define`` decorator, which gives you ability to define hybrid functions to use them in different ways: .. code-block:: python from sqlconstruct import define @define def url_for_product(product): def body(product_id, product_name): return '/p{id}-{name}.html'.format( id=product_id, name=slugify(product_name), ) return body, [product.id, product.name] @define def url_for_image(image, width, height): def body(image_id, image_name, width, height): return '//images.example.st/{id}-{width}x{height}-{name}'.format( id=image_id, width=width, height=height, name=slugify(image_name), ) return body, [image.id, image.name, width, height] Now these functions can be used in these ways: .. code-block:: python >>> product = session.query(Product).first() >>> url_for_product(product) # objective style '/p1-foo-product.html' >>> url_for_product.defn(Product) # apply_ declaration <sqlconstruct.apply_ at 0x000000000> >>> url_for_product.func(product.id, product.name) # functional style '/p1-foo-product.html' Modified final ``Construct`` definition: .. code-block:: python product_struct = Construct({ 'name': Product.name, 'url': url_for_product.defn(Product), 'image_url': if_( Image.id, then_=url_for_image.defn(Image, 100, 100), else_=None, ), }) Installation ============ To install `SQLConstruct`, simply: .. code-block:: shell $ pip install sqlconstruct Tested `Python` versions: 2.7, 3.4, 3.8. Tested `SQLAlchemy` versions: 1.0, 1.1, 1.2, 1.3. Examples above are using `SQLAlchemy` >= 0.9, if you are using older versions, you will have to do next changes in your project configuration: .. code-block:: python from sqlconstruct import QueryMixin from sqlalchemy.orm.query import Query as BaseQuery class Query(QueryMixin, BaseQuery): pass session = Session(engine, query_cls=Query) Flask-SQLAlchemy: .. code-block:: python from flask.ext.sqlalchemy import SQLAlchemy db = SQLAlchemy(app, session_options={'query_cls': Query}) or .. code-block:: python db = SQLAlchemy(session_options={'query_cls': Query}) db.init_app(app) License ======= `SQLConstruct` is distributed under the BSD license. See LICENSE.txt for more details.


نحوه نصب


نصب پکیج whl SQLConstruct-0.2.4:

    pip install SQLConstruct-0.2.4.whl


نصب پکیج tar.gz SQLConstruct-0.2.4:

    pip install SQLConstruct-0.2.4.tar.gz