معرفی شرکت ها


ResPAN-0.1.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A light structured residual autoencoder and mutual nearest neighbor paring guided adversarial network for scRNA-seq batch correction.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل ResPAN-0.1.0
نام ResPAN
نسخه کتابخانه 0.1.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yuge Wang, Tianyu Liu
ایمیل نویسنده wangyuge22@qq.com
آدرس صفحه اصلی https://github.com/AprilYuge/ResPAN
آدرس اینترنتی https://pypi.org/project/ResPAN/
مجوز MIT License
# ResPAN This reporsity contains code and information of data used in the paper “*ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks*”. Source code for ResPAN are in the [ResPAN](https://github.com/AprilYuge/ResPAN/tree/main/ResPAN) folder, scipts for reproducing benchmarking results are in the [scripts](https://github.com/AprilYuge/ResPAN/tree/main/scripts) folder, and data information can be found in the [data](https://github.com/AprilYuge/ResPAN/tree/main/data) folder. ResPAN is a light structured **Res**idual autoencoder and mutual nearest neighbor **P**aring guided **A**dversarial **N**etwork for scRNA-seq batch correction. The workflow of ResPAN contains three key steps: generation of training data, adversarial training of the neural network, and generation of corrected data without batch effect. A figure summary is shown below. ![alt text](https://github.com/AprilYuge/ResPAN/blob/main/images/workflow.png). More details about ResPAN can be found in our [manuscript](https://www.biorxiv.org/content/10.1101/2021.11.08.467781v3.full). ### Package requirement ResPAN is implemented in Python and based on the framework of PyTorch. Before downloading and installing ResPAN, some packages need to be installed first. These required packages along with their versions used in our manuscript are listed below. | Package | Version | |------------|--------------| | numpy | 1.18.1 | | pandas | 1.3.5 | | scipy | 1.8.0 | | scanpy | 1.8.2 | | pytorch | 1.10.2+cu113 | ### Download To download and install ResPAN, please copy and paste the following line to your terminal: ``` git clone https://github.com/AprilYuge/ResPAN.git ``` ### Brief tutorial A brief tutorial of using ResPAN can be found below and under the folder [tutorials](https://github.com/AprilYuge/ResPAN/tree/main/tutorials). To run our method, the first thing is to import necessary packages: ``` import numpy as np import pandas as pd import scanpy as sc import scipy from ResPAN import run_respan ``` Then we need to load the scRNA-seq data with batch information and preprocess it before running ResPAN: ``` # data loading adata = sc.read_loom('CL_raw.loom', sparse=False) # pre-processing sc.pp.filter_cells(adata, min_genes=200) sc.pp.filter_genes(adata, min_cells=3) sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4) sc.pp.log1p(adata) sc.pp.highly_variable_genes(adata, n_top_genes=2000, batch_key='batch') adata = adata[:, adata.var['highly_variable']] # check if data is in sparse format if isinstance(adata.X, scipy.sparse.csr.csr_matrix): adata_new = sc.AnnData(adata.X.todense()) adata_new.obs = adata.obs.copy() adata_new.obs_names = adata.obs_names adata_new.var_names = adata.var_names adata_new.obs_names.name = 'CellID' adata_new.var_names.name = 'Gene' del adata adata = adata_new ``` Now we can run ResPAN on the preprocessed data for batch correction. The output result is an AnnData object: ``` adata_new = run_respan(adata, batch_key='batch', epoch=300, batch=1024, reduction='pca', subsample=3000, seed=999) ``` As indicated in our manuscipt, we use PCA for dimensionality reduction, kPCA (`reduction='kpca'`) and CCA (`reduction='cca'`) are also implemented, but their performance were not as good as PCA. Meanwhile, we subsampled cells in each batch to 3,000 before finding random walk MNN pairs [1]. To visualize our results, we can use the following commands: ``` adata_new.raw = adata_new sc.pp.scale(adata_new, max_value=10) sc.tl.pca(adata_new, 20, svd_solver='arpack') sc.pp.neighbors(adata_new) sc.tl.umap(adata_new) sc.set_figure_params(figsize=(5,5),fontsize=12) sc.pl.umap(adata_new, color=['batch', 'celltype'], frameon=False, show=False) ``` ### Code references For the implementation of ResPAN, we referred to [WGAN-GP](https://github.com/Zeleni9/pytorch-wgan) for the structure of Generative Adversarial Network and [iMAP](https://github.com/Svvord/iMAP) for the random walk mutual nearest neighbor method. Many thanks to their open-source treasure. ### Paper references [1] Wang, Dongfang, et al. "iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks." Genome biology 22.1 (2021): 1-24.


نیازمندی

مقدار نام
- numpy
- pandas
- scipy
- torch
- sklearn
- scanpy


نحوه نصب


نصب پکیج whl ResPAN-0.1.0:

    pip install ResPAN-0.1.0.whl


نصب پکیج tar.gz ResPAN-0.1.0:

    pip install ResPAN-0.1.0.tar.gz