معرفی شرکت ها


RelevanceAI-dev-3.2.9.2022.9.19.14.3.23.717862


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

-
ویژگی مقدار
سیستم عامل OS Independent
نام فایل RelevanceAI-dev-3.2.9.2022.9.19.14.3.23.717862
نام RelevanceAI-dev
نسخه کتابخانه 3.2.9.2022.9.19.14.3.23.717862
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Relevance AI
ایمیل نویسنده dev@relevance.ai
آدرس صفحه اصلی https://relevance.ai/
آدرس اینترنتی https://pypi.org/project/RelevanceAI-dev/
مجوز -
![Github Banner](assets/github_banner.png) ## Relevance AI - The ML Platform for Unstructured Data Analysis [![Documentation Status](https://readthedocs.org/projects/relevanceai/badge/?version=latest)](https://relevanceai.readthedocs.io/en/latest/?badge=latest) [![License](https://img.shields.io/pypi/l/relevanceai)](https://img.shields.io/pypi/l/relevanceai) 🌎 80% of data in the world is unstructured in the form of text, image, audio, videos, and more. 🔥 Use Relevance to unlock the value of your unstructured data: - ⚡ Quickly analyze unstructured data with pre-trained machine learning models in a few lines of code. - ✨ Visualize your unstructured data. Text highlights from Named entity recognition, Word cloud from keywords, Bounding box from images. - 📊 Create charts for both structured and unstructured. - 🔎 Drilldown with filters and similarity search to explore and find insights. - 🚀 Share data apps with your team. [Sign up for a free account ->](https://hubs.ly/Q017CkXK0) Relevance AI also acts as a platform for: - 🔑 Vectors, storing and querying vectors with flexible vector similarity search, that can be combined with multiple vectors, aggregates and filters. - 🔮 ML Dataset Evaluation, for debugging dataset labels, model outputs and surfacing edge cases. ## 🧠 Documentation | Type | Link | | ------------- | ----------- | | Python API | [Documentation](https://sdk.relevance.ai/) | | Python Reference | [Documentation](https://relevanceai.readthedocs.io/en/latest/) | | Cloud Dashboard | [Documentation](https://docs.relevance.ai/) | ## 🛠️ Installation Using pip: ```{bash} pip install -U relevanceai ``` Using conda: ```{bash} conda install -c relevance relevanceai ``` ## ⏩ Quickstart [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RelevanceAI/RelevanceAI/blob/development/guides/quickstart_guide.ipynb) Login to `relevanceai`: ```{python} from relevanceai import Client client = Client() ``` Prepare your documents for insertion by following the below format: - Each document should be a dictionary - Include a field `_id` as a primary key, otherwise it's automatically generated - Suffix vector fields with `_vector_` ```{python} docs = [ {"_id": "1", "example_vector_": [0.1, 0.1, 0.1], "data": "Documentation"}, {"_id": "2", "example_vector_": [0.2, 0.2, 0.2], "data": "Best document!"}, {"_id": "3", "example_vector_": [0.3, 0.3, 0.3], "data": "document example"}, {"_id": "4", "example_vector_": [0.4, 0.4, 0.4], "data": "this is another doc"}, {"_id": "5", "example_vector_": [0.5, 0.5, 0.5], "data": "this is a doc"}, ] ``` ### Insert data into a dataset Create a dataset object with the name of the dataset you'd like to use. If it doesn't exist, it'll be created for you. ```{python} ds = client.Dataset("quickstart") ds.insert_documents(docs) ``` > Quick tip! Our Dataset object is compatible with common dataframes methods like `.head()`, `.shape()` and `.info()`. ### Perform vector search ```{python} query = [ {"vector": [0.2, 0.2, 0.2], "field": "example_vector_"} ] results = ds.search( vector_search_query=query, page_size=3, ) ``` [Learn more about how to flexibly configure your vector search ->](https://sdk.relevance.ai/docs/search) ### Perform clustering Generate clusters ```{python} clusterop = ds.cluster(vector_fields=["example_vector_"]) clusterop.list_closest() ``` Generate clusters with sklearn ```{python} from sklearn.cluster import AgglomerativeClustering cluster_model = AgglomerativeClustering() clusterop = ds.cluster(vector_fields=["example_vector_"], model=cluster_model, alias="agglomerative") clusterop.list_closest() ``` [Learn more about how to flexibly configure your clustering ->](https://sdk.relevance.ai/docs/search) ## 🧰 Config The config object contains the adjustable global settings for the SDK. For a description of all the settings, see [here](https://github.com/RelevanceAI/RelevanceAI/blob/development/relevanceai/constants/config.ini). To view setting options, run the following: ```{python} client.config.options ``` The syntax for selecting an option is section.key. For example, to disable logging, run the following to modify logging.enable_logging: ```{python} client.config.set_option('logging.enable_logging', False) ``` To restore all options to their default, run the following: ### Changing the base URL You can change the base URL as such: ```{python} client.base_url = "https://.../latest" ``` ## 🚧 Development ### Getting Started To get started with development, ensure you have pytest and mypy installed. These will help ensure typechecking and testing. ```{bash} python -m pip install pytest mypy ``` Then run testing using: > Don't forget to set your test credentials! ```{bash} export TEST_PROJECT = xxx export TEST_API_KEY = xxx python -m pytest mypy relevanceai ``` Set up precommit ```{bash} pip install precommit pre-commit install ```


نیازمندی

مقدار نام
- autopep8
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
- pylint
- jupyter
- pre-commit
- black
- mypy
- xenon
- pytest
- pytest-dotenv
- pytest-xdist
- pytest-cov
- pytest-mock
- types-requests
- pytest-sugar
- pytest-rerunfailures
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
>=3.0.9 openpyxl
>=2021.10.1 fsspec
>=0.5.2 umap-learn
>=0.5.0 sphinx-rtd-theme
==0.8.1 pydata-sphinx-theme
==1.8.4 sphinx-autoapi
==1.12.0 sphinx-autodoc-typehints
- autopep8
- pylint
- jupyter
- pytest
- pytest-dotenv
- pytest-xdist
- pytest-cov
- pytest-mock
- mypy
- types-requests
- pytest-sugar
- pytest-rerunfailures
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
>=3.0.9 openpyxl
>=2021.10.1 fsspec
>=0.5.2 umap-learn
>=0.5.0 sphinx-rtd-theme
==0.8.1 pydata-sphinx-theme
==1.8.4 sphinx-autoapi
==1.12.0 sphinx-autodoc-typehints
- autopep8
- pylint
- jupyter
- pytest
- pytest-dotenv
- pytest-xdist
- pytest-cov
- pytest-mock
- mypy
- types-requests
- pytest-sugar
- pytest-rerunfailures
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
>=3.0.9 openpyxl
>=2021.10.1 fsspec
>=0.5.2 umap-learn
>=0.5.0 sphinx-rtd-theme
==0.8.1 pydata-sphinx-theme
==1.8.4 sphinx-autoapi
==1.12.0 sphinx-autodoc-typehints
>=0.5.0 sphinx-rtd-theme
==0.8.1 pydata-sphinx-theme
==1.8.4 sphinx-autoapi
==1.12.0 sphinx-autodoc-typehints
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
>=3.0.9 openpyxl
>=2021.10.1 fsspec
>=0.8.27 hdbscan
>=0.2.0 scikit-learn-extra
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
- sentence-transformers
- jsonshower
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
- pytest
- pytest-dotenv
- pytest-xdist
- pytest-cov
- pytest-mock
- mypy
- types-requests
- pytest-sugar
- pytest-rerunfailures
>=4.49.0 tqdm
>=1.0.0 pandas
>=0.5.3 loguru
>=1.7.1 document-utils
>=2.0.0 requests
>=1.19.0 numpy
<1.2.0 joblib
>=0.20.0 scikit-learn
>=3.0 typing-extensions
~=1.4.0 analytics-python
>=3.8.1 aiohttp
>=1.4.4 appdirs
>=3.6.7 orjson
>=5.9.1 psutil
>=3.0.9 openpyxl
>=2021.10.1 fsspec
>=0.5.2 umap-learn
>=0.5.2 umap-learn


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl RelevanceAI-dev-3.2.9.2022.9.19.14.3.23.717862:

    pip install RelevanceAI-dev-3.2.9.2022.9.19.14.3.23.717862.whl


نصب پکیج tar.gz RelevanceAI-dev-3.2.9.2022.9.19.14.3.23.717862:

    pip install RelevanceAI-dev-3.2.9.2022.9.19.14.3.23.717862.tar.gz