معرفی شرکت ها


RTvisualize-1.1.19


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A general purpose realtime visualization
ویژگی مقدار
سیستم عامل OS Independent
نام فایل RTvisualize-1.1.19
نام RTvisualize
نسخه کتابخانه 1.1.19
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jalil Nourisa
ایمیل نویسنده jalil.nourisa@gmail.com
آدرس صفحه اصلی https://github.com/janursa/RTvisualize
آدرس اینترنتی https://pypi.org/project/RTvisualize/
مجوز -
# Real time visualization This program enables users to conveniently visualize their data in a real-time manner using the power of Dash and Plotly. The program reads the data from CSV files and generates graphs on a web browser. The graphs will be updated automatically upon changes to the files. ## Installation This package can be installed using pip: ``` pip install RTvisualize ``` or download the package and command: ``` python install setup.py ``` ## Quick start The library requires a setting variable for execution, where the user can specify as many plots as desired for simultaneous visualization. A generic template looks like this, ```python from realtime import monitor settings = { 'name1': {...}, # specifications for the 1st graph 'name2':{...} # specifications for the 2nd graph monitor.watch(settings).run(IP='0.0.0.0`) # runs the server and maps the graphs on the specified IP:8050 address ``` The specifications of each plot contains a few important entries from the user. Generally, two types of approaches can be taken in using the library; first, using [build-in plots](#build-in-plots); and second, using [custom plots](#custom-plots). ### Build-in plots The library provides the following build-in plots: - [Line plot](#line-plots) - [Scatter plots 2D](#scatter-plots-2D) - [Scatter plots 3D](#scatter-plots-3D) - [Map plot](#map-plot) See the <a href="https://github.com/janursa/RTvisualize/tree/master/examples/builtin">example</a>. #### Line plots Line plots intends to monitor the progression of variables during time (see <a href="https://plotly.com/python/line-charts/" title="cppy">Plotly line plots</a>). The required specifications entry for the line plots looks like, ```py 'plot1':{ 'graph_dir' = 'path/to/CSV/file1.csv', # directory to csv file containing the data 'graph_type' = 'lines', # specifies the graph type } ``` Additional settings available for line plots are, ```py 'col': 'col s5', # specifies grid size for the html page 'x-axis-moves' = True, # whether to move the x-axis by holding the x-length fixed 'x-axis-length' = 50 # if the above flag is True, specify the x-axis length ``` For the html grid specification see <a href="https://materializecss.com/grid.html" >here</a>. The csv file needs to be formated in a vertical shape with the name of the variable as column title. User can use as many variables as intended to be plotted on the same graph. See [example](https://github.com/janursa/RTvisualize/blob/master/examples/builtin/linesdata.csv). #### Scatter plots 2D The required specifications entry for the line plots looks like, ```py 'plot2':{ 'graph_dir' = 'path/to/CSV/file2.csv', # directory to csv file containing the data 'graph_type' = 'scatter2', # specifies the graph type } ``` Additional settings available, ```py 'col': 'col s5', # specifies grid size for the html page ``` For scatter plots, the information `x,y,type,size` needs to be provided for each scatter point (see [example](https://github.com/janursa/RTvisualize/blob/master/examples/builtin/scatterdata.csv)). #### Scatter plots 3D The specifications entry for scatter plot 3D is similar to [scatter 2D](#scatter-plot-2D) with the exeptions of: ```py 'graph_type' = 'scatter3' ``` and the csv formatting is similar to the scatter 2D with the exception of having an additional `z`item, i.e. `x,y,z,type,size`. #### Map plot Map plot intends to visualize a heteregenous variable accross a domain. It uses similar method as [scatter 2D](#scatter-plot-2D) but the range of colors is contineous. The specifications entry for the map plot is similar to [scatter 2D](#scatter-plot-2D) with the exeptions of: ```py 'graph_type' = 'map', 'color_range' = [0,100] #optional. To fix the color range ``` The CSV formatting is similar to [scatter 2D](#scatter-plot-2D) . ### Custom plots This approach enables the user to construct the plot in a desired way and pass it to the program together with CSV file, ```python from realtime import monitor def figure1(data): fig = px.scatter( data, x=data["x"], y=data["y"], size=data["size"] ) return fig settings = { "plot1": { "graph_dir" : "path/to/CSV/file1.csv", "graph_type" : 'custom', # this is different than build-in plots "figure" : figure1, # this provides the plotting function "col" : 'col s5' } } ``` An example of this type can be found [here](https://github.com/janursa/RTvisualize/blob/master/examples/custom/). ### License This project is licensed under the MIT License - see the LICENSE.md file for details ### Authors * Jalil Nourisa ### Acknowledgments Inspired by [sentdex](https://www.youtube.com/channel/UCfzlCWGWYyIQ0aLC5w48gBQ)


نیازمندی

مقدار نام
>=1.12 dash
>=4.6.0 plotly
>=1.0.3 pandas
>=1.18.4 numpy


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl RTvisualize-1.1.19:

    pip install RTvisualize-1.1.19.whl


نصب پکیج tar.gz RTvisualize-1.1.19:

    pip install RTvisualize-1.1.19.tar.gz