معرفی شرکت ها


RMinimum-Algorithm-0.0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Package for the RMinimum algorithm
ویژگی مقدار
سیستم عامل OS Independent
نام فایل RMinimum-Algorithm-0.0.1
نام RMinimum-Algorithm
نسخه کتابخانه 0.0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Julian Lorenz
ایمیل نویسنده jfk.lorenz@gmail.com
آدرس صفحه اصلی https://github.com/jfklorenz/RMinimum-Algorithm
آدرس اینترنتی https://pypi.org/project/RMinimum-Algorithm/
مجوز -
# RMinimum-Algorithm ![GitHub status](https://img.shields.io/badge/status-release-success) ![GitHub top language](https://img.shields.io/github/languages/top/jfklorenz/python-rminimum) ![Travis](https://travis-ci.org/jfklorenz/RMinimum-Algorithm.svg?branch=master) ![GitHub](https://img.shields.io/github/license/jfklorenz/python-rminimum) A **Python** implementation of the **RMinimum algorithm**. The algorithm is presented in the paper **Fragile Complexity of Comparison-Based Algorithms** by Prof. Dr. Ulrich Meyer and others in 2018. A reworked version of it can can be found on [arXiv.org](https://arxiv.org/abs/1901.02857 "arXiv"). It introduces the algorithms *RMinimum* and *RMedian* and also the concept of *fragile complexity*, i.e. the amount of times an element has been compared during the process of the algorithm. The package was published on **PyPI** and tested on **Travis CI**. --- Folder | Content --- | --- data | all experimental data as *.csv* files docs | scientific paper presenting the algorithm (from arXiv) jupyter | *Jupyter Notebook* validation and test files src | *Python* source code tests | *PyTest* test files --- ## Algorithm In the following we present RMinimum, a randomized recursive algorithm for finding the min- imum among n distinct elements. The algorithm has a tuning parameter k(n) controlling the trade-off between the expected fragile complexity f_min(n) of the minimum element and the maxi- mum expected fragile complexity f_rem(n) of the remaining none-minimum elements; if n is clear from the context, we use k instead of k(n). Depending on the choice of k, we obtain interest- ing trade-offs for the pair hE [fmin (n)] , max E [frem (n)]i ranging from <O(ε−1loglog(n)), O(n_ε)> to <O(log(n)/loglog(n)), O(log(n)/loglog(n))>. Given a total ordered set X of n distinct elements, RMinimum performs the following steps: 1. Randomly group the elements into n/2 pairwise-disjoint pairs and use one comparison for each pair to partition X into two sets L and W of equal size: W contains all winners, i.e. elements that are smaller than their partner. Set L gets the losers, who are larger than their partner and hence cannot be the global minimum. 2. Partition L into n/k random disjoint subsets L_1 , . . . , L_n/k each of size k and find the minimum element mi in each Li using a perfectly balanced tournament tree (see Theorem 1). 3. Partition W into n/k random disjoint subsets W_1 , . . . , W_n/k each of size k and filter out all elements in W_i larger than mi to obtain W_0 = U_i {w|w ∈ Wi ∧ w < mi }. 4. If |W_0| ≤ log2 (n_0) where n0 is the initial problem size, find and return the minimum using a perfectly balanced tournament tree (see Theorem 1). Otherwise recurse on W_0. --- ## Complexity 1. *Runtime:* RMinimum requires linear work w(n) = O(n). 2. Let k(n) = n_ε for 0 < ε ≤ 1/2. Then RMinimum requires E(f_min) = O(ε−1loglogn) comparisons for the minimum and E(f_rem) = O(n_ε) for the remaining elements. 3. Let k(n) = logn/loglogn. Then RMinimum requires E(f_min) = O(logn/loglogn) comparisons for the minimum and E(f_rem) = O(logn/loglogn) for the remaining elements.


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl RMinimum-Algorithm-0.0.1:

    pip install RMinimum-Algorithm-0.0.1.whl


نصب پکیج tar.gz RMinimum-Algorithm-0.0.1:

    pip install RMinimum-Algorithm-0.0.1.tar.gz