معرفی شرکت ها


READ-pytorch-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Unsupervised Anomaly Localization Toolbox and Benchmark
ویژگی مقدار
سیستم عامل OS Independent
نام فایل READ-pytorch-0.1.1
نام READ-pytorch
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده TCL MV Lab
ایمیل نویسنده chao46.zhang@tcl.com
آدرس صفحه اصلی https://git.openi.org.cn/OpenI/READ_pytorch
آدرس اینترنتی https://pypi.org/project/READ-pytorch/
مجوز Apache License 2.0
<div align="center"> <img src="docs/img/READlogo.png" width="650"/> </div> --- # READ (Reconstruction or Embedding based Anomaly Detection) This repo is the pytorch version of READ, plz jump to <https://git.openi.org.cn/OpenI/READ_mindspore> for the mindspore version. READ is an open source toolbox focused on unsupervised anomaly detection/localization tasks. By only training on the defect-free samples, READ is able to recognize defect samples or even localize anomalies on defect samples. The purpose of this repo is to promote the research and application of unsupervised anomaly detection and localization algorithms. READ is designed to provide: - A unified interface for encapsulating diverse anomaly localization algorithms - High quality implementations of novel anomaly localization algorithms - Templates for using these algorithms in a detailed task In addition, READ provides the benchmarks for validating novel unsupervised anomaly detection and localization algorithms for [MVTec AD dataset](https://www.mvtec.com/company/research/datasets/mvtec-ad/). ## Changelog - **[Nov 07 2021] READ_pytorch v0.1.1 is Released!** - **[May 08 2021] READ_pytorch v0.1.0 is Released!** Please refer to [ChangeLog](docs/changelog.md) for details and release history. ## Installation ### Install the latest version from the master branch on OpenI ``` pip install -U git+https://git.openi.org.cn/OpenI/READ_pytorch ``` Please follow the [Installation](docs/installation.md) document to get a detailed instruction. ## Getting Started Please follow the [Getting Started](docs/getting_started.md) document to run the provided demo tasks. ## Localization examples (based on READ) <img src="docs/img/bottle_ad.png" width="50%" height="50%"> <img src="docs/img/metal_nut_ad.png" width="50%" height="50%"> <img src="docs/img/carpet_ad.png" width="50%" height="50%"> <img src="docs/img/hazelnut_ad.png" width="50%" height="50%"> <img src="docs/img/toothbrush_ad.png" width="50%" height="50%"> ## Supported Algorithms - [x] [RIAD](https://pdf.sciencedirectassets.com/272206/AIP/1-s2.0-S0031320320305094/main.pdf) - [x] [FAVAE](https://arxiv.org/pdf/2008.05369.pdf) - [x] [SPADE](https://arxiv.org/abs/2005.02357) - [x] [PaDim](https://arxiv.org/pdf/2011.08785v1.pdf) - [x] [USTAD](https://openaccess.thecvf.com/content_CVPR_2020/papers/Bergmann_Uninformed_Students_Student-Teacher_Anomaly_Detection_With_Discriminative_Latent_Embeddings_CVPR_2020_paper.pdf) - [x] [STPM](https://arxiv.org/pdf/2103.04257v2.pdf) - [x] [InTra](https://arxiv.org/pdf/2104.13897v2.pdf) - [x] [SemiOrth](https://arxiv.org/pdf/2105.14737.pdf) ## Results ### Implementation results on MVTec * Image-level anomaly detection accuracy (ROCAUC) |MVTec|RIAD|FAVAE|SPADE-WR50X2|PaDiM-WR50X2|USTAD|STPM|SemiOrth-WR50X2|InTra| |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |Carpet|0.654|0.642|0.819|0.996|0.886|0.844|0.996|0.430| |Grid|0.980|1.000|0.42|0.966|0.919|0.982|0.836|0.600| |Leather|0.982|0.706|0.94|1.000|0.748|0.989|1.000|0.964| |Tile|0.838|0.842|0.980|0.973|0.998|0.981|0.963|0.894| |Wood|0.861|0.879|0.979|0.987|0.952|0.997|0.989|0.897| |All texture classes|0.863|0.814|0.828|0.984|0.901|0.959|0.957|0.757| |Bottle|0.984|0.999|0.972|0.999|0.940|1.000|0.995|0.947| |Cable|0.543|0.942|0.857|0.880|0.478|0.874|0.779|0.562| |Capsule|0.836|0.712|0.873|0.896|0.785|0.911|0.835|0.479| |Hazelnut|0.904|0.999|0.907|0.950|0.939|0.986|0.973|0.776| |Metal nut|0.820|0.911|0.734|0.987|0.509|0.988|0.917|0.466| |Pill|0.789|0.779|0.785|0.935|0.798|0.982|0.744|0.554| |Screw|0.746|0.595|0.658|0.846|0.706|0.871|0.470|0.665| |Toothbrush|0.956|0.925|0.878|0.981|0.825|0.769|0.978|0.533| |Transistor|0.890|0.885|0.900|0.983|0.563|0.810|0.927|0.520| |Zipper|0.978|0.647|0.952|0.920|0.761|0.967|0.872|0.461| |All object classes|0.845|0.839|0.852|0.9377|0.730|0.916|0.849|0.596| |All classes|0.851|0.831|0.844|0.953|0.787|0.930|0.885|0.650| * Pixel-level anomaly detection accuracy (ROCAUC) |MVTec|RIAD|FAVAE|SPADE-WR50X2|PaDiM-WR50X2|USTAD|STPM|SemiOrth-WR50X2|InTra| |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |Carpet|0.904|0.836|0.985|0.988|0.958|0.977|0.989|0.468| |Grid|0.984|0.994|0.978|0.969|0.850|0.983|0.860|0.631| |Leather|0.990|0.908|0.993|0.991|0.914|0.991|0.993|0.989| |Tile|0.761|0.626|0.942|0.940|0.948|0.969|0.935|0.873| |Wood|0.821|0.908|0.956|0.946|0.899|0.940|0.950|0.715| |All texture classes|0.892|0.854|0.971|0.967|0.914|0.972|0.945|0.735| |Bottle|0.945|0.962|0.968|0.982|0.902|0.983|0.977|0.806| |Cable|0.619|0.957|0.920|0.957|0.816|0.940|0.922|0.560| |Capsule|0.978|0.965|0.983|0.985|0.913|0.973|0.981|0.774| |Hazelnut|0.974|0.987|0.986|0.982|0.974|0.968|0.976|0.911| |Metal nut|0.828|0.953|0.969|0.972|0.891|0.954|0.949|0.753| |Pill|0.955|0.943|0.947|0.950|0.928|0.987|0.922|0.745| |Screw|0.984|0.960|0.992|0.984|0.967|0.983|0.949|0.785| |Toothbrush|0.966|0.984|0.989|0.988|0.947|0.982|0.989|0.692| |Transistor|0.813|0.907|0.861|0.973|0.687|0.806|0.958|0.657| |Zipper|0.981|0.817|0.982|0.983|0.825|0.987|0.975|0.497| |All object classes|0.904|0.944|0.960|0.976|0.885|0.956|0.960|0.718| |All classes|0.900|0.914|0.963|0.973|0.895|0.962|0.955|0.730| ## License This project is released under the [Open-Intelligence Open Source License V1.1](LICENSE). ## Contact Please contact me if there is any question (Chao Zhang <chao.zhang46@tcl.com>). ## About Machine Vision Group, TCL Corporate Research(HK) Co., Ltd is the main developer of READ. <div align="left"> <img src="docs/img/tcl_logo.jpg" width="200"/> </div> Any contributions to READ is welcome!


نیازمندی

مقدار نام
- tqdm
- numpy
- pandas
- scipy
>=0.4.5 timm
>=0.2.0 adabelief-pytorch
>=0.5.0 kornia
>=3.3.4 matplotlib
==0.5.2 albumentations
>=0.3.0 einops
>=0.24.2 scikit-learn
>=0.17.2 scikit-image
>=1.7.0 torch
- torchvision


زبان مورد نیاز

مقدار نام
>=3, <4 Python


نحوه نصب


نصب پکیج whl READ-pytorch-0.1.1:

    pip install READ-pytorch-0.1.1.whl


نصب پکیج tar.gz READ-pytorch-0.1.1:

    pip install READ-pytorch-0.1.1.tar.gz