معرفی شرکت ها


QGCN-0.0.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

a qgcn model package
ویژگی مقدار
سیستم عامل OS Independent
نام فایل QGCN-0.0.9
نام QGCN
نسخه کتابخانه 0.0.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده YOLO LAB
ایمیل نویسنده -
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/QGCN/
مجوز -
# QGCN QGCN method for graph classification: https://arxiv.org/abs/2104.06750 ## Installation required packages: - scipy~=1.8.0 - pandas~=1.4.2 - networkx~=2.8.3 - numpy~=1.22.3 - torch~=1.11.0 - scikit-learn~=1.1.1 - bokeh~=2.4.2 - matplotlib~=3.5.1 - bitstring~=3.1.9 - python-louvain~=0.16 - graph-measures~=0.1.44 You can download the package by the command: ``` pip install QGCN ``` ## How to use ### Graph representing To use this package you will need to provide the following files as input: * Graphs csv file - files that contain the graphs for input and their labels. The format of the file is flexible, but it must contain headers for any column, and there must be a column provided for: - graph id - source node id - destination node id - label id (every graph id can be attached to only one label) - External data file - external data for every node (Optional) The format of this file is also flexible, but it must contain headers for any column, and there must be a column provided for: **note!! every node must get a value** - graph id - node id - column for every external feature (if the value is not numeric then it can be handled with embeddings) Example for such files: <br> graph csv file: ```csv g_id,src,dst,label 6678,_1,_2,i 6678,_1,_3,i 6678,_2,_4,i 6678,_3,_5,i ``` External data file: ```csv g_id,node,charge,chem,symbol,x,y 6678,_1,0,1,C,4.5981,-0.25 6678,_2,0,1,C,5.4641,0.25 6678,_3,0,1,C,3.7321,0.25 6678,_4,0,1,C,6.3301,-0.25 ``` ### Parameters passing After creating these file, you should define the parameters of the model. This can be done with a json file, or with data classes: * Example json file: - (Notice that if an external file is not provided, you should put the associated parameters as None.) ```json { "dataset_name": "Aids", "external": { "file_path": "./data/AIDS_external_data_all.csv", "graph_col": "g_id", "node_col": "node", "embeddings": ["chem", "symbol"], "continuous": ["charge", "x", "y"] }, "graphs_data": { "file_path": "./data/AIDS_all.csv", "graph_col": "g_id", "src_col": "src", "dst_col": "dst", "label_col": "label", "directed": "False", "features": ["DEG", "CENTRALITY", "BFS"], "adjacency_norm": "NORM_REDUCED", "percentage": 1, "standardization": "zscore" }, "model": { "label_type": "binary", "num_classes": 2, "use_embeddings": "True", "embeddings_dim": [10, 10], "activation": "relu_", "dropout": 0, "lr": 1e-3, "optimizer": "ADAM_", "L2_regularization": 0, "f": "c_x0", "GCN_layers": [ { "in_dim": "None", "out_dim": 100 }, { "in_dim": 100, "out_dim": 50 }, { "in_dim": 50, "out_dim": 25 } ] }, "activator": { "epochs": 3, "batch_size": 128, "loss_func": "binary_cross_entropy_with_logits_", "train": 0.3467, "dev": 0.1153, "test": 0.538 } } ``` * Example dataclass objects: ```python from QGCN.params import GraphsDataParams, ExternalParams, ModelParams, ActivatorParams external_params = ExternalParams(file_path="./data/Mutagenicity_external_data_all.csv", embeddings=["chem"], continuous=[]) graphs_data_params = GraphsDataParams(file_path="../src/QGCN/data/Mutagenicity_all.csv", standardization="min_max") model_params = ModelParams(label_type="binary", use_embeddings="True", embeddings_dim=[10], activation="srss_", GCN_layers=[ {"in_dim": "None", "out_dim": 250}, {"in_dim": 250, "out_dim": 100}]) activator_params = ActivatorParams(epochs=100) ``` ### Executing the model Once you have these files, you can use the QGCNModel from QGCN.activator with the path to the parameters file or the dataclass objects: ```python from torch.utils.data import DataLoader from QGCN.params import GraphsDataParams, ExternalParams, ModelParams, ActivatorParams from QGCN.activator import QGCNModel, QGCNDataSet # sets the parameters of the dataset: external = ExternalParams(file_path="./data/Mutagenicity_external_data_all.csv", graph_col="g_id", node_col="node", embeddings=["chem"], continuous=[]) graphs_data = GraphsDataParams(file_path="../src/QGCN/data/Mutagenicity_all.csv", standardization="min_max") # sets the parameters of the model: model = ModelParams(label_type="binary", num_classes=2, use_embeddings="True", embeddings_dim=[10], activation="srss_", dropout=0.2, lr=0.005, optimizer="ADAM_", L2_regularization=0.005, f="x1_x0", GCN_layers=[ {"in_dim": "None", "out_dim": 250}, {"in_dim": 250, "out_dim": 100}]) activator = ActivatorParams(epochs=100) qgcn_model = QGCNModel("Mutagen", graphs_data, external, model, activator) qgcn_model.train(should_print=False) ds = QGCNDataSet("Mutagen", graphs_data, external) loader = DataLoader( ds.get_dataset(), shuffle=False ) for _, (A, x0, embed, label) in enumerate(loader): output = qgcn_model.predict(A, x0, embed) print(output, label) ``` ## Links The datasets can be download here: https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets . Notice you will have to change their format to ours. You can see an example data here (gitHub link) the conventor in datasets -> change_data_format.py Mail address for more information: 123shovalf@gmail.com


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl QGCN-0.0.9:

    pip install QGCN-0.0.9.whl


نصب پکیج tar.gz QGCN-0.0.9:

    pip install QGCN-0.0.9.tar.gz