معرفی شرکت ها


PySocialForce-1.1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Numpy implementation of the Extended Social Force model.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PySocialForce-1.1.2
نام PySocialForce
نسخه کتابخانه 1.1.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yuxiang Gao
ایمیل نویسنده yuxiang.gao@jhu.edu
آدرس صفحه اصلی https://github.com/yuxiang-gao/PySocialForce
آدرس اینترنتی https://pypi.org/project/PySocialForce/
مجوز MIT
# PySocialForce master: [![Build Status](https://travis-ci.com/yuxiang-gao/PySocialForce.svg?branch=master)](https://travis-ci.com/yuxiang-gao/PySocialForce) dev: [![Build Status](https://travis-ci.com/yuxiang-gao/PySocialForce.svg?branch=dev)](https://travis-ci.com/yuxiang-gao/PySocialForce) A Python Implementation of the Extended Social Force Model for Pedestrian Dynamics ## Table of Contents - [PySocialForce](#pysocialforce) - [Table of Contents](#table-of-contents) - [About The Project](#about-the-project) - [Roadmap](#roadmap) - [Installation](#installation) - [Usage](#usage) - [Configuration](#configuration) - [Examples](#examples) - [Ped-ped Scenarios](#ped-ped-scenarios) - [Environmental obstacles](#environmental-obstacles) - [Groups](#groups) - [Contributing to this project](#contributing-to-this-project) - [License](#license) - [Acknowledgements](#acknowledgements) - [References](#references) ## About The Project This project is a NumPy implementation of the **Extended Social Force Model** [[2]](#2). It extends the vanilla social force model [[1]](#1) to simulate the walking behaviour of pedestrian social groups. ### Roadmap - [x] Simulation of indiviual pedestrians - [x] Social groups simulation - [ ] Inter-group interactions - [x] Environmental obstacles - [ ] Better environment representation - [x] Easy configuration with toml file - [x] Visualization of indiviuals and groups - [ ] Visualization of forces/potentials ## Installation 1. Clone the PySocialForce repo ```sh git clone https://github.com/yuxiang-gao/PySocialForce.git ``` 2. (optional) Create a python virtual environment and activate it 3. Install the pip package ```sh # Option 1: install from PyPI pip install 'pysocialforce[test,plot]' # Option 2: install from source pip install -e '.[test,plot]' # run linting and tests pylint pysocialforce pytest tests/*.py ``` ## Usage Basic usage: ```python import pysocialforce as psf # initiate simulator sim = psf.Simulator( initial_state, groups=groups, obstacles=obstacles ) # do 50 updates sim.step(n=50) ``` To generate an animation of the simulation, use the `SceneVisualizer` context: ```python with psf.plot.SceneVisualizer(simulator, "output_image") as sv: sv.animate() ``` For more examples, please refer to the [examples folder](examples). ## Configuration You can configure the parameters by passing in a [toml](https://github.com/toml-lang/toml) file to the simulator: ```Python sim = psf.Simulator( initial_state, groups=groups, obstacles=obstacles, config_file="user_config.toml" ) ``` By default the simulator loads the configurations at [pysocialforce/utils/default.toml](pysocialforce/utils/default.toml). An example of the user config and the explanation of the parameters is provided at [examples/example.toml](examples/example.toml). Each force has a parameter named `factor`, which is the scale factor for that force. For specific parameters for each force, refer to the comments in the example below: ```Toml ... [desired_force] factor = 1.0 # The relaxation distance of the goal goal_threshold = 0.2 # How long the relaxation process would take relaxation_time = 0.5 [social_force] factor = 5.1 # relative importance of position vs velocity vector lambda_importance = 2.0 # define speed interaction gamma = 0.35 n = 2 # define angular interaction n_prime = 3 [obstacle_force] factor = 10.0 # the standard deviation of obstacle force sigma = 0.2 # threshold to trigger this force threshold = 3.0 [group_coherence_force] factor = 3.0 [group_repulsive_force] factor = 1.0 # threshold to trigger this force threshold = 0.55 [group_gaze_force] factor = 4.0 # fielf of view fov_phi = 90.0 ``` ## Examples ### Ped-ped Scenarios | ![crossing](images/crossing.png) | ![narrow](images/narrow_crossing.png) | | ----------------------------------------- | ------------------------------------- | | ![opposing](image/../images/opposing.png) | ![2opposing](images/2opposing.png) | ### Environmental obstacles | ![sperator](images/separator.gif) | ![gate](images/gate.gif) | | ------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------- | | Emergent lane formation with Emergent lane formation with 30 pedestrians: ![walkway30](images/walkway_30.gif) | Emergent lane formation with Emergent lane formation with 60 pedestrians: ![walkway60](images/walkway_60.gif) | ### Groups ![group crossing](images/group_crossing.gif) ## Contributing to this project Thanks for your interest in contributing! PySocialForce is a open-source project and we welcome contributions of any kind. If you find a bug or have a feature request, feel free to contact us using [Github issues](https://github.com/yuxiang-gao/PySocialForce/issues). If you are reporting a bug, please try to include a minimal example to recreate it. If you are requesting a feature, please also give some possible use cases to justify the request. If you want to help with development, you can work on a fork of the project and start a pull request. Please document your code and make sure that you have added the necessary tests and examples. Please also adhere to [semantic versioning](https://semver.org). ## License Distributed under the MIT License. See `LICENSE` for more information. ## Acknowledgements - This project is based on [svenkreiss](https://github.com/svenkreiss)'s implementation of the vanilla social force model. - The implementation of forces drew inspiration from the [pedsim_ros][pedsim_ros] package. ## References <a id="1">[1]</a> Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51(5), 4282–4286. <https://doi.org/10.1103/PhysRevE.51.4282> <a id="2">[2]</a> Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., & Theraulaz, G. (2010). The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE, 5(4), 1–7. <https://doi.org/10.1371/journal.pone.0010047> [socialforce]: https://github.com/svenkreiss/socialforce [pedsim_ros]: https://github.com/srl-freiburg/pedsim_ros


نیازمندی

مقدار نام
>=1.19 numpy
>=0.10 toml
>=0.51 numba
>=1.5 scipy
- black
- jupyter
- matplotlib
- pylint
- pytest


نحوه نصب


نصب پکیج whl PySocialForce-1.1.2:

    pip install PySocialForce-1.1.2.whl


نصب پکیج tar.gz PySocialForce-1.1.2:

    pip install PySocialForce-1.1.2.tar.gz