معرفی شرکت ها


PyMVPD-LITE-0.0.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python package for multivariate pattern dependence
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PyMVPD-LITE-0.0.4
نام PyMVPD-LITE
نسخه کتابخانه 0.0.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Mengting Fang
ایمیل نویسنده mtfang0707@gmail.com
آدرس صفحه اصلی https://github.com/sccnlab/PyMVPD_LITE
آدرس اینترنتی https://pypi.org/project/PyMVPD-LITE/
مجوز -
# PyMVPD_LITE This is a lite version of [PyMVPD](https://github.com/sccnlab/PyMVPD) to model the multivariate interactions between brain regions using fMRI data. You can find a description of the MVPD method in this [article](https://doi.org/10.1371/journal.pcbi.1005799). [NEW!] We added a preprint with detailed descriptions about the toolbox and example applications. Check it out [here](https://biorxiv.org/cgi/content/short/2021.10.12.464157v1)! ## MVPD Model Family 1. Linear Regression (LR) Models Available built-in model components: * Dimensionality reduction: principal component analysis ([PCA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)), independent component analysis ([ICA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html)) * Regularization: [Lasso](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html) (L1), [Ridge](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html) (L2), [RidgeCV](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html) (L2 with built-in cross-validation) * Cross validation: leave k run out Example LR models: * [L2_LR](https://github.com/sccnlab/PyMVPD_LITE/tree/main/exp/run_MVPD_L2_LR.py): linear regression model with L2 regularization * [PCA_LR](https://github.com/sccnlab/PyMVPD_LITE/tree/main/exp/run_MVPD_PCA_LR.py): linear regression model with PCA but no regularization In addition to the above built-in functions, you can also customize your own functions by adding scripts under [mvpdlite/custom_func](https://github.com/sccnlab/PyMVPD_LITE/tree/main/mvpdlite/custom_func). ## Workflow <img src="/PyMVPD_LITE_workflow.png" width="750"/> ## Installation & Dependencies The easiest way to install the package is to execute (possibly in a [new virtual environment](https://packaging.python.org/tutorials/installing-packages/#creating-and-using-virtual-environments)) the following command: ``` pip install PyMVPD-LITE ``` You can also install from the GitHub [repository](https://github.com/sccnlab/PyMVPD_LITE) to get the most up-to-date version. ``` git clone https://github.com/sccnlab/PyMVPD_LITE.git pip install -r requirements.txt ``` The following packages need to be installed to use PyMVPD LITE: * python >= 3.6 * nibabel>=3.2.1 * numpy>=1.19.3 * scikit-learn>=0.20.1 * scipy>=1.1.0 ## Tutorial ### Test Dataset [Data](https://github.com/sccnlab/PyMVPD_LITE/tree/main/exp/testdata) of one subject from the [_StudyForrest_](http://studyforrest.org) dataset. Predictor ROI: FFA - fusiform face area, Target ROI: GM - gray matter. * Raw data were first preprocessed using [fMRIPrep](https://fmriprep.readthedocs.io/en/latest/index.html) and then denoised by using CompCor (see more details in [Fang et al. 2019](https://doi.org/10.31234/osf.io/qbx4m)). ### Example Analyses and Scripts To give a quick try for MVPD analysis, you can directly run our example script [run_MVPD_test.py](https://github.com/sccnlab/PyMVPD_LITE/blob/main/exp/run_MVPD_test.py) or other example MVPD models under [exp/](https://github.com/sccnlab/PyMVPD_LITE/blob/main/exp/) (e.g. run_MVPD_xxx.py): ``` cd exp/ python3 run_MVPD_test.py ``` We have also provided a [tutorial](https://github.com/sccnlab/PyMVPD_LITE/blob/main/exp/PyMVPD_LITE_Tutorial.ipynb) in jupyter notebook. Feel free to check it out! ## Customization To customize and run your own MVPD model, please follow the three steps: ``` import os from mvpdlite import data_loading, model_exec ``` Step 1 - Analysis Specification ``` # Model Input Info inputinfo=data_loading.structtype() inputinfo.sub='sub-01' # subject whose data are to be analyzed filepath_func=[] # input functional Data filepath_func+=['path/to/functional/data/run1.nii.gz'] filepath_func+=['path/to/functional/data/run2.nii.gz'] ...... inputinfo.filepath_mask1='path/to/predictor/ROI/mask.nii.gz' # predictor ROI mask inputinfo.filepath_mask2='path/to/target/ROI/mask.nii.gz' # target ROI mask inputinfo.roidata_save_dir='path/to/save/roidata/' # output data directory inputinfo.results_save_dir='path/to/save/results/' # output model results directory inputinfo.save_prediction=False # whether to save predicted timecourses in the target ROI # MVPD Model Parameters params=data_loading.structtype() params.leave_k=1 # cross validation: leave k run out, default=1 ### LR model parameters ...... ``` Step 2 - Data Loading ``` data_loading.load_data(inputinfo) ``` Step 3 - Analysis Execution ``` model_exec.MVPD_exec(inputinfo, params) ``` ### Required Input Information - **inputinfo.sub** - This variable specifies the subject whose data are to be analyzed. - **input.filepath_func** - This variable specifies the list of paths to the directories containing processed functional data. - **inputinfo.filepath_mask1** - This variable specifies the path to the directory containing the predictor ROI mask. - **inputinfo.filepath_mask2** - This variable specifies the path to the directory containing the target ROI mask. - **inputinfo.roidata_save_dir** - This variable specifies the path to the directory where the extracted functional data will be saved. - **inputinfo.results_save_dir** - This variable specifies the path to the directory where the results will be saved. - **inputinfo.save_prediction** - This variable specifies whether to save predicted timecourses in the target ROI. ### List of Model Parameters NOTICE: Remember to set the value of the parameter manually if you do not want to use the default value. - General model parameters - **params.leave_k** - This parameter determines the number of leave out runs in cross-validation. - The default value is 1 (leave-one-run-out procedure). - LR model parameters - **params.dim_reduction**: - This parameter determines whether dimensionality reduction is applied to the input data. - It is only used if you are using a linear regression model by setting params.mode_class='LR' - The default value is false. - **params.dim_type**: - This parameter determines the type of the dimensionality reduction. - It is only used if you are using a linear regression model and you set "params.dim_reduction=True". - The available values are 'pca', 'ica', or the name of your custom dimensionality reduction method. - The default value is 'pca'. - **params.num_dim**: - This parameter determines the number of dimensions to keep after dimensionality reduction. - It is only used if you are using a linear regression model and you set "params.dim_reduction=True". - The default value is 3. - **params.lin_reg**: - This parameter determines whether to add a regularization term to the linear regression model. - It is only used if you are using a linear regression model by setting params.mode_class='LR'. - The default value is false. - **params.reg_type** - This parameter determines the type of regularization term that you want to add to the linear regression model. - It is only used if you are using a linear regression model with regularization by setting "params.mode_class='LR', params.lin_reg=True". - The available values are 'Ridge', 'Lasso', and 'RidgeCV'. - The default value is 'Ridge'. - **params.reg_strength** - This parameter determines the regularization strength of the chosen regularization term. - It is only used if you are using a linear regression model with regularization by setting "params.mode_class='LR', params.lin_reg=True". - The default value is '0.001'. - **params.reg_strength_list** - This parameter determines the array of regularization strength values to try in the cross-validation for Ridge regression. - It is only used if you are using a linear RidgeCV regression model by setting "params.mode_class='LR', params.lin_reg=True, params.reg_type='RidgeCV'". - The default array is [0.001, 0.01, 0.1]. ## Citation PyMVPD has been used in: - PyMVPD: A toolbox for multivariate pattern dependence. [PDF](https://www.biorxiv.org/content/10.1101/2021.10.12.464157v1.full.pdf) <br/> Fang, M., Poskanzer, C., Anzellotti, S. - Identifying hubs that integrate responses across multiple category-selective regions.<br/> Fang, M., Aglinskas, A., Li, Y., Anzellotti, S. If you plan to use the toolbox, please consider citing this. ``` @article{fang2021pymvpd, title={PyMVPD: A toolbox for multivariate pattern dependence}, author={Fang, Mengting and Poskanzer, Craig and Anzellotti, Stefano}, journal={bioRxiv}, year={2021}, publisher={Cold Spring Harbor Laboratory} } ``` ## Contact Reach out to Mengting Fang (mtfang0707@gmail.com) for questions, suggestions and feedback!


نیازمندی

مقدار نام
>=3.2.1 nibabel
>=1.19.3 numpy
>=0.20.1 scikit-learn
>=1.1.0 scipy


نحوه نصب


نصب پکیج whl PyMVPD-LITE-0.0.4:

    pip install PyMVPD-LITE-0.0.4.whl


نصب پکیج tar.gz PyMVPD-LITE-0.0.4:

    pip install PyMVPD-LITE-0.0.4.tar.gz