معرفی شرکت ها


PyJacksonAlgo-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python package to solve the job shop scheduling problem with Gantt chart as output
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PyJacksonAlgo-0.1.1
نام PyJacksonAlgo
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Saraei Thamer
ایمیل نویسنده thamer.saraei@polymtl.ca
آدرس صفحه اصلی https://github.com/th-rpy/jackson_job_shop_scheduling
آدرس اینترنتی https://pypi.org/project/PyJacksonAlgo/
مجوز -
# PyJackson : Python Job Shop Scheduling Module Job Shop Scheduling Problem (JSS) with Jackson's Algorithm solving using Python >= 3.6. <div align="center"> [![Build status](https://github.com/th-rpy/jackson_job_shop_scheduling/workflows/build/badge.svg?branch=master&event=push)](https://github.com/th-rpy/jackson_job_shop_scheduling/actions?query=workflow%3Abuild) [![Python Version](https://img.shields.io/pypi/pyversions/jackson_job_shop_scheduling.svg)](https://test.pypi.org/project/PyJackson/1.3.0/) [![Pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/th-rpy/jackson_job_shop_scheduling/blob/master/.pre-commit-config.yaml) [![License](https://img.shields.io/github/license/th-rpy/jackson_job_shop_scheduling)](https://github.com/th-rpy/jackson_job_shop_scheduling/blob/master/LICENSE) </div> <p> Implementation of a mathematical model in Python to solve an assignment problem in Job Shop environments. With its respective Gantt chart. A job shop consists of a set of distinct machines that process jobs. Each job is a series of tasks that require use of particular machines for known durations, and which must be completed in specified order. The job shop scheduling problem is to schedule the jobs on the machines to minimize the time necessary to process all jobs (i.e, the makespan) or some other metric of productivity. Job shop scheduling is one of the classic problems in Operations Research. </p> ## Very first steps First of all, you need to install a few dependencies. - [Reportlab](https://pypi.org/project/reportlab/) : for generation PDF file. ```bash pip install reportlab ``` - [numpy](https://pypi.org/project/numpy/) : for matrix operations. ```bash pip install numpy ``` - [pandas](https://pypi.org/project/pandas/) : for data manipulating. ```bash pip install pandas ``` - [matplotlib](https://pypi.org/project/matplotlib/) : for plotting Gantt Chart. ```bash pip install matplotlib ``` ## 🚀 Features - Worked with multiple data formats: CSV, JSON and TEXT files. - Plotting Gantt Chart for each solution found for all sub-problems(Virtual). - Generate a PDF file with the Gantt Charts for each solution found for all sub-problems(Virtual) and the optimal solution as well. ## Installation ```bash pip install PyJacksonAlgo==0.1.0 ``` ## Usage ```python from jacksonpy import JacksonAlgo ########################## Example using text file ########################## # Reading and manipulating data data_path = "YOUR_PATH/input.txt" # path to the data file d = JacksonAlgo.Data(data_path) # create a Data object with the path to the data file data = ( d.get_job_durations() ) # get the durations: list of list of integers [[J1, dur1, dur2, dur3], [J2, dur1, dur2, dur3] ...] # Solving the problem al = JacksonAlgo.JackAlgo(data) # create a JackAlgo object with the data print(al) # print the problem details preparedData = al.prepareData() # prepare the data for the algorithm cmaxVirtual, _, __ = al.get_cmax_virtual( preparedData ) # get the cmaxVirtual result of the virtual sub-problems result = al.solve( cmaxVirtual ) # solve the problem and save the result in the result variable al.generate_pdf_file( results=result ) # generate a pdf file with the result of the problem ########################## Example using Json file ########################## # Reading and manipulating data data_path = "YOUR_PATH//input.json" # path to the data file d = JacksonAlgo.Data(data_path) # create a Data object with the path to the data file data = ( d.get_job_durations() ) # get the durations: list of list of integers [[J1, dur1, dur2, dur3], [J2, dur1, dur2, dur3] ...] print(data) # print the data # Solving the problem al = JacksonAlgo.JackAlgo(data) # create a JackAlgo object with the data print(al) # print the problem details preparedData = al.prepareData() # prepare the data for the algorithm cmaxVirtual, _, __ = al.get_cmax_virtual( preparedData ) # get the cmaxVirtual result of the virtual sub-problems result = al.solve( cmaxVirtual ) # solve the problem and save the result in the result variable al.generate_pdf_file( results=result ) # generate a pdf file with the result of the problem ########################## Example using 2d array ########################## # Reading and manipulating data (defined as a lis of lists of integers) data = [ [1, 7, 5, 6, 9, 10], [2, 4, 6, 5, 8, 1], [3, 8, 2, 4, 3, 7], [4, 6, 3, 9, 7, 5], [5, 5, 7, 3, 5, 9], ] # list of list of integers [[J1, dur1, dur2, dur3], [J2, dur1, dur2, dur3] ...] # Solving the problem al = JacksonAlgo.JackAlgo(data) # create a JackAlgo object with the data print(al) # print the problem details preparedData = al.prepareData() # prepare the data for the algorithm cmaxVirtual, _, __ = al.get_cmax_virtual( preparedData ) # get the cmaxVirtual result of the virtual sub-problems result = al.solve( cmaxVirtual ) # solve the problem and save the result in the result variable al.generate_pdf_file( results=result ) # generate a pdf file with the result of the problem ########################## Example using dictionary ########################## # Reading and manipulating data (defined as a lis of lists of integers) data = { "Task 1": [3, 4, 6, 5], "Task 2": [2, 3, 6, 9], "Task 3": [8, 9, 2, 6], "Task 4": [7, 6, 3, 2], "Task 5": [3, 6, 4, 5], "Task 6": [5, 8, 7, 9], } # dictionary of lists of integers {'Task 1': [3, 4, 6, 5], 'Task 2': [2, 3, 6, 9], ...} # Solving the problem al = JacksonAlgo.JackAlgo(data) # create a JackAlgo object with the data print(al) # print the problem details preparedData = al.prepareData() # prepare the data for the algorithm cmaxVirtual, _, __ = al.get_cmax_virtual( preparedData ) # get the cmaxVirtual result of the virtual sub-problems result = al.solve( cmaxVirtual ) # solve the problem and save the result in the result variable al.generate_pdf_file( results=result ) # generate a pdf file with the result of the problem ``` ## Results - <h5>Gantt Chart for the optimal solution:</h5> <img alt="" title="Gantt Diagram" src="https://github.com/th-rpy/jackson_job_shop_scheduling/raw/main/example/output/ImagesOutput/Gantt_Chart_virtual1_cmax_47.png"/> - <h5>PDF file with the Gantt Charts for each solution found for all sub-problems(Virtual):</h5> <p>Please download the PDF to view it: <a href="https://github.com/th-rpy/jackson_job_shop_scheduling/blob/main/example/output/Algo_Cds_Output.pdf">Download PDF</a>.</p> ## 🛡 License [![License](https://img.shields.io/github/license/th-rpy/jackson_job_shop_scheduling)](https://github.com/th-rpy/jackson_job_shop_scheduling/blob/master/LICENSE) This project is licensed under the terms of the `GNU GPL v3.0` license. See [LICENSE](https://github.com/th-rpy/jackson_job_shop_scheduling/blob/master/LICENSE) for more details. ## 📃 Citation ```bibtex @misc{PyJackson, author = {Saraei Thamer}, title = {Implementation of a mathematical model in Python to solve an assignment problem in Job Shop environments. With its respective Gantt chart.}, Github = {th-rpy}, year = {2022}, howpublished = {\url{https://github.com/th-rpy/jackson_job_shop_scheduling}} } ```


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl PyJacksonAlgo-0.1.1:

    pip install PyJacksonAlgo-0.1.1.whl


نصب پکیج tar.gz PyJacksonAlgo-0.1.1:

    pip install PyJacksonAlgo-0.1.1.tar.gz