معرفی شرکت ها


PyHistopathology-0.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A WSI Image processing application
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PyHistopathology-0.1
نام PyHistopathology
نسخه کتابخانه 0.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Sai Chandra
ایمیل نویسنده deepak.kumar.iet@gmail.com
آدرس صفحه اصلی https://github.com/saichandra1/PyHistopathology
آدرس اینترنتی https://pypi.org/project/PyHistopathology/
مجوز -
# Python Package: PyHistopathology Read our documentation at https://pyhistopathology.readthedocs.io/en/latest/ ## Command line tool: python3 WSI_PATCH_Extraction.py -args Mandatory args - -i: input svs file path - -o: output folder path - -f: input folder for path - Note: you should use either -i or -f, cannot use both. Additional args - -c: criteria - criteria: Random or None, Default is None - -s: patch size - Size of the patch to extract, default is (256,256) - -n: number of patches - Only should be given for -c Random. Default value is 2000. - -a: input xml - if annotations are provided annotations file path should be given. Otherwise don't use this arg. # Package Usage: ## Reading WSI **Description** - use WSI_Scanning.readWSI() to read an WSI Image - Input: WSI path or directory - Output: functioning numpy array of WSI Image with dtype int32 **Function** - readWSI(WSI_path, magnification_level, annotation_file, annonated_level) Arguments - WSI_path: Directory of WSI - - magnification_level: level of zoom, example (40x,20x,10x,5x). Default magnification is **“20x”** - Note if magnification 40x for max zoom level of 20x image an error will be raised. - annotation_file: Default annotation = None. if annotation are available in xml formats. use annotation = inputxml file path. - annonated_level= if annotation is not giving no need to consider this variable. if annotation is given then mention z-axis of annotations. Default annotatedlevel =0 ``` ###Reading image example from WSI_Preprocessing.Preprocessing import WSI_Scanning import cv2 img,slide_dim = WSI_Scanning.readWSI("example.svs") cv2.imwrite("example.png",img) ``` ![](https://paper-attachments.dropbox.com/s_FDB48527FA5ECB7BD9C0FF3FE49E25C14783C24594EC3FBA01AC4BD504920652_1574801775409_example.PNG) ## Denoising WSI Description use Denoising.denoising() to remove stains, folds and other background noise in WSI - input: WSI Path or directory - Output: functioning numpy array of WSI Image (After denoising) with dtype int32. Function denoising(inputsvs, magnification, filtering, patch_size, upperlimit, lowerlimit, red_value, green_value, blue_value) Arguments - inputsvs: path or location of WSI. - magnification: level of zoom, example (40x,20x,10x,5x). Default magnification is **“20x”** - Note if magnification 40x for max zoom level of 20x image an error will be raised. - filtering: GuassianBlur, RGBThersholding, None - GuassianBlur: Homogeneity calculations based on image smoothing and Gaussian blur equations. We compute sum of square differences between two consecutive Gaussian blurred images as score for homogeneity - Upper limit: upper threshold of homogeneity score. default value is 9500 with kernel size of 11*11 - lower limit: lower threshold of homogeneity score. default value is 1500 with kernel size of 11*11 - Patch size: Not significant parameters for GuassianBlur filtering - RGBThersholding: Validated patches based on RGB values of patches - red_value, green-value, blue_values are threshold for RGB - - None: Only removes Background - - Note that our default is GuassianBlur technique. GuassianBlur is highly effective and requires more computational power (RAM). RGBThersholding is less effective which needs less computational power ~~~from WSI_Preprocessing.Preprocessing import Denoising import cv2 # Here mandatory options are example.svs and magnification img = Denoising.denoising("example.svs", "20x" ) cv2.imwrite("example.png",img) ~~~ ![](https://paper-attachments.dropbox.com/s_FDB48527FA5ECB7BD9C0FF3FE49E25C14783C24594EC3FBA01AC4BD504920652_1575319269525_example2.PNG) # Extracting Patches Description use Extractingpatches.extractingPatches() to extract patches from WSI. - input: WSI Path or directory - output: patches from WSI. Function: extractingPatches(inputsvs, outputpath, magnification, patch_extraction_creatia, number_of_patches, filtering, patch_size, upperlimit, lowerlimit, red_value, green_value, blue_value, Annotation, Annotationlevel, Requiredlevel, reconstructionimagepath) Arguments - inputsvs, magnification, patch_extraction_creatia, filtering, patch_size, upperlimit, lowerlimit, red_value, green_value, blue_value, Annotation, Annotationlevel, Requiredlevel, arguments is same as denosing module. - patch_extraction_creatia: random, None - - Default is None. For extracting a fixed number of patches for WSI we can use random. - Default number of patches is 2000 - outputpath: folder to store the extracted patches - reconstructionimagepath: we you want to compare the patches with WSI we can mention the reconstructionimagepath. - Default is None - - Note: it only works with patch_extraction_creatia = None. - - Note: For WSI number of patches can exceed 20k. ```##patch extarction and reconstruction example from WSI_Preprocessing.Preprocessing import Extarctingpatches import cv2 img = Extarctingpatches.extractingPatches("example.svs","temp" ,"20x" ) cv2.imwrite("exampler.png",img) # Here mandatory options are example.svs and magnification, and outputpath Extractingpatches.extractingPatches(example.svs, outputpath, magnification) ``` ![](https://paper-attachments.dropbox.com/s_FDB48527FA5ECB7BD9C0FF3FE49E25C14783C24594EC3FBA01AC4BD504920652_1575341759963_Example+Image.PNG)


نحوه نصب


نصب پکیج whl PyHistopathology-0.1:

    pip install PyHistopathology-0.1.whl


نصب پکیج tar.gz PyHistopathology-0.1:

    pip install PyHistopathology-0.1.tar.gz