معرفی شرکت ها


PyConform-0.3.0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Parallel Python NetCDF Dataset Standardization Tool
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PyConform-0.3.0
نام PyConform
نسخه کتابخانه 0.3.0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Kevin Paul
ایمیل نویسنده kpaul@ucar.edu
آدرس صفحه اصلی https://github.com/NCAR/PyConform
آدرس اینترنتی https://pypi.org/project/PyConform/
مجوز -
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3895009.svg :target: https://doi.org/10.5281/zenodo.3895009 .. image:: https://codecov.io/gh/NCAR/PyConform/branch/master/graph/badge.svg :target: https://codecov.io/gh/NCAR/PyConform .. image:: https://github.com/NCAR/PyConform/workflows/Tests/badge.svg :target: https://github.com/NCAR/PyConform/actions?query=workflow%3ATests .. image:: https://github.com/NCAR/PyConform/workflows/Linting/badge.svg :target: https://github.com/NCAR/PyConform/actions?query=workflow%3ALinting PyConform ========= A package for transforming a NetCDF dataset into a defined format suitable for publication according to a defined publication standard. :AUTHORS: Sheri Mickelson, Kevin Paul :COPYRIGHT: 2020, University Corporation for Atmospheric Research :LICENSE: See the LICENSE.rst file for details Send questions and comments to Kevin Paul (kpaul@ucar.edu) or Sheri Mickelson (mickelso@ucar.edu). Overview -------- The PyConform package is a Python-based package for converting model time-series data into MIP-conforming (i.e., *standardized*) time-series data. It was designed for CMIP6 *specifically for NCAR's CESM CMIP6 workflow*, but we attempted to design the code in a way that is general purpose. PyConform attempts to divide the standardization problem specification step into two separate pieces: 1. a specification of the *standard*, and 2. a specification of the *conversion process*. This separate was created to allow the *standard* to be defined by (for example) the MIP designers and the *conversion process* to be defined by the model developers (i.e., scientists). For CMIP6, we used the ``dreqpy`` utility to define the *standard*, and the scientists then just needed to provide one-line *definitions* for how to convert the raw CESM data into the requested standardized output. Currently, the main considerations that need to be made when creating *definitions* are the following: 1. physical units will be converted *automatically*, if possible according to the ``cf_units`` package, 2. the *dimensions* of the resulting data variable produced by the *definition* operation must be *mappable* to requested dimensions specified in the standard, and 3. special operations/computations that are not supplied with PyConform in the ``functions`` module may need to be written by hand and called explicitly in the output variable *definition*. .. warning:: PyConform should only be used with caution! As mentioned, it was created specifically for NCAR's contributions to CMIP6. PyConform is not designed to fix *problems* with your input data, and as such is completely incapable of detecting many problems with your data! (That is, "garbage in, garbage out!") The *core* part of PyConform was designed and implemented before a full understanding of the requirements could be obtained. Full testing of PyConform could not be done without knowing what all of the input (i.e., model output) data would look like! And, to make matters more difficult, the *specification* utility that PyConform depends upon (``dreqpy``) took quite a while to stabilize. As a result, much of PyConform's testing had to be done *on-the-fly*. .. warning:: **Deprecation:** With the completion of CMIP6, this project is essentially deprecated. Much of the operations and core functionality of this tool can be reproduced in a much more robust way with Xarray_. The parallelism provided via MPI in PyConform can be handled in a much better way with Dask_, which already works with Xarray_. It is our belief that this utility should be replaced in the future by a framework built on Xarray_ and Dask_, but due to resource limitations, we cannot build that tool. We would certainly welcome any others to take on that challenge! .. _Xarray: http://xarray.pydata.org/ .. _Dask: http://dask.org Dependencies ------------ The PyConform package directly depends upon 4 main external packages: * ASAPTools (>=0.6) * cf-units * dreqpy * netCDF4-python * ply * python-dateutil These dependencies imply the dependencies: * numpy (>=1.5) * netCDF4 * MPI * UDUNITS2 Additionally, the entire package is designed to work with Python v2.7 and up to (but not including) Python v3.0. The version requirements have not been rigidly tested, so earlier versions may actually work. No version requirement is made during installation, though, so problems might occur if an earlier versions of these packages have been installed. Obtaining the Source Code ------------------------- Currently, the most up-to-date development source code is available via git from the site:: https://github.com/NCAR/PyConform Check out the most recent stable tag. The source is available in read-only mode to everyone. Developers are welcome to update the source and submit Pull Requests via GitHub. Building & Installing from Source --------------------------------- Installation of the PyConform package is very simple. After checking out the source from the above svn link, via:: $ git clone https://github.com/NCAR/PyConform Enter the newly cloned directory:: $ cd PyConform Then, run the Python setuptools setup script. On unix, this involves:: $ python setup.py install [--prefix=/path/to/install/location] The prefix is optional, as the default prefix is typically /usr/local on linux machines. However, you must have permissions to write to the prefix location, so you may want to choose a prefix location where you have write permissions. Like most distutils installations, you can alternatively install the PyReshaper with the '--user' option, which will automatically select (and create if it does not exist) the $HOME/.local directory in which to install. To do this, type (on unix machines):: $ python setup.py install --user This can be handy since the site-packages directory will be common for all user installs, and therefore only needs to be added to the PYTHONPATH once. The documentation_ for PyConform is hosted on GitHub Pages. .. _documentation: https://ncar.github.io/pyconform


نیازمندی

مقدار نام
- asaptools
- cf-units
- netCDF4
- numpy
- ply
- python-dateutil


زبان مورد نیاز

مقدار نام
>=2.7 Python


نحوه نصب


نصب پکیج whl PyConform-0.3.0:

    pip install PyConform-0.3.0.whl


نصب پکیج tar.gz PyConform-0.3.0:

    pip install PyConform-0.3.0.tar.gz