معرفی شرکت ها


PyBenchFCN-1.0.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A python implementation of optimization benchmarks
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PyBenchFCN-1.0.3
نام PyBenchFCN
نسخه کتابخانه 1.0.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Yifan He
ایمیل نویسنده he.yifan.xs@alumni.tsukuba.ac.jp
آدرس صفحه اصلی https://github.com/Y1fanHE/PyBenchFCN
آدرس اینترنتی https://pypi.org/project/PyBenchFCN/
مجوز -
<h1> <p align="center"># PyBenchFCN #</p> <p align="center">A python implementation of optimization benchmarks</p> </h1> <p align="center"> <img src="./image/f51_3D.png" width=300><img src="./image/f51_2D.png" width=300></p> <p align="center"><img src="./image/f58_2D.png" width=300><img src="./image/f58_3D.png" width=300></p> - [How to Install](#how-to-install) - [How to Use](#how-to-use) - [Set Benchmark Function](#set-benchmark-function) - [Plot Fitness Landscape](#plot-fitness-landscape) - [List of Functions](#list-of-functions) - [Classical Single-Objective Optimization](#classical-single-objective-optimization) - [Discrete Optimization](#discrete-optimization) - [Multi-Objective Optimization](#multi-objective-optimization) - [Real-World Optimization](#real-world-optimization) - [Authors](#authors) - [License](#license) - [Acknowledgement](#acknowledgement) ## How to Install This library is a python implementation for the MatLab package [BenchmarkFcns Toolbox](http://benchmarkfcns.xyz/). You can simply install with command ```pip install PyBenchFCN```. - Pre-request: ```numpy```, ```matplotlib``` ## How to Use The input of each numerical optimization problem could be a 1-D ndarray, or 2-D ndarray. - **1-D array** - an example of **a solution (individual)** for 10D problem is ```np.random.uniform(0, 1, 10)```, where each entry is a decision variable. - <u>use ```f()``` to return a fitness value (scalar for SOP, 1D-array for MOP).</u> - **2-D array** - an example of **group of solutions (population)** for 10D problem is ```np.random.uniform(0, 1, (5, 10))```, where each row (totally 5) is an individual. - <u>use ```F()``` to return an array of fitness value (1-D array for SOP, 2-D array for MOP).</u> ### Set Benchmark Function To set a benchmark function, one may see the sample code in ```Factory.py``` in the [repository](https://github.com/Y1fanHE/PyBenchFCN), or follow the script below. Also, there is a sample optimization program provided in ```sample.py```. ```python3 import numpy as np # import single objective problems from PyBenchFCN from PyBenchFCN import SingleObjectiveProblem as SOP n_var = 10 # dimension of problem n_pop = 3 # size of population problem = SOP.ackleyfcn(n_var) # Ackley problem '''same function as the code above from PyBenchFCN import Factory problem = Factory.set_sop("f1", n_var) ''' print( np.round(problem.optimalF, 5) ) # show rounded optimal value xl, xu = problem.boundaries # bound of problem x = np.random.uniform(xl, xu, n_var) # initialize a solution print( problem.f(x) ) # show fitness value as scalar X = np.random.uniform( xl, xu, (n_pop, n_var) ) # initialize a population print( problem.F(X) ) # show fitness values as 1d-array ``` ### Plot Fitness Landscape To plot a fitness landscape (2D space), one can use the code below. **Notice, this function only works for continuous SOPs.** ```python3 from PyBenchFCN import Tool Tool.plot_sop("sphere", mode="save") # plot and save landscape of Sphere function Tool.plot_sop("schwefel", plot_type="contour") # plot contour plot of Schwefel function ``` ## List of Functions ### Classical Single-Objective Optimization Totally, [61 single-objective functions](./SingleObjectiveProblem.md) are implemented. The plot of 2D versions of 59 problems are provided. Please check the homepage of [BenchmarkFcns Toolbox](http://benchmarkfcns.xyz/) or [this website](https://www.sfu.ca/~ssurjano/optimization.html) for the further documentation. ### Discrete Optimization *Under development ...* ### Multi-Objective Optimization *Under development ...* ### Real-World Optimization *Under development ...* ## Authors [Yifan He](https://y1fanhe.github.io) @ Dept. of CS, UTsukuba ## License This project is licensed under the MIT License - see the [LICENSE](./LICENSE) file for details. ## Acknowledgement PyBenchFCN is maintained by [Yifan He](https://y1fanhe.github.io). The author of this repostory is very grateful to Mr. Mazhar Ansari Ardeh, who implemented the MatLab package BenchFCNs Toolbox. - If you find any mistakes, please report at a new issue. - If you want to help me implement more benchmarks (discrete optimization, multi-objective optimization), please contact at [he.yifan.xs@alumni.tsukuba.ac.jp](mailto:he.yifan.xs@alumni.tsukuba.ac.jp).


نیازمندی

مقدار نام
- numpy
- matplotlib


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl PyBenchFCN-1.0.3:

    pip install PyBenchFCN-1.0.3.whl


نصب پکیج tar.gz PyBenchFCN-1.0.3:

    pip install PyBenchFCN-1.0.3.tar.gz