معرفی شرکت ها


PathCORE-T-1.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python 3 implementation of PathCORE-T analysis methods
ویژگی مقدار
سیستم عامل OS Independent
نام فایل PathCORE-T-1.0.2
نام PathCORE-T
نسخه کتابخانه 1.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Greene Lab
ایمیل نویسنده team@greenelab.com
آدرس صفحه اصلی https://github.com/greenelab/PathCORE-T
آدرس اینترنتی https://pypi.org/project/PathCORE-T/
مجوز BSD-3-Clause
PathCORE-T ---------- Python 3 implementation of methods described in `Chen et al.'s 2017 PathCORE-T paper <https://doi.org/10.1101/147645>`_. Note that this software was renamed from PathCORE to PathCORE-T in Oct 2017. The T specifies that pathway co-occurrence relationships are identified using features extracted from **transcriptomic** data. The module itself is still named `pathcore` to maintain backwards compatibility for users of the original PathCORE software package. This code has been tested on Python 3.5. The documentation for the modules in the package can be `accessed here <http://pathcore-demo.herokuapp.com/static/data/docs_pathcore/index.html>`_. Installation ---------------- To install the current PyPI version (recommended), run:: pip install PathCORE-T For the latest GitHub version, run:: pip install git+https://github.com/greenelab/PathCORE-T.git#egg=PathCORE-T Examples --------- We recommend that users of the PathCORE-T software begin by reviewing the examples in the `PathCORE-T-analysis <https://github.com/greenelab/PathCORE-T-analysis>`_ repository. The analysis repository contains shell scripts and wrapper analysis scripts that demonstrate how to run the methods in this package on features constructed from a broad compendium according to the `workflow we describe in our paper <https://github.com/greenelab/PathCORE-T-analysis#the-pathcore-analysis-workflow>`_. Specifically, `this Jupyter notebook <https://github.com/greenelab/PathCORE-T-analysis/blob/master/jupyter-notebooks/Supplemental_PAO1_FastICA_example.ipynb>`_ is a simple example of the workflow and a great place to start. Package contents ---------------- ===================================== feature_pathway_overrepresentation.py ===================================== The methods in this module are used to identify the pathways overrepresented in features extracted from a transcriptomic dataset of genes-by-samples. Features must preserve the genes in the dataset and assign weights to these genes based on some distribution. [`feature_pathway_overrepresentation documentation. <http://pathcore-demo.herokuapp.com/static/data/docs_pathcore/source/pathcore.html#module-pathcore.feature_pathway_overrepresentation>`_] =========== network.py =========== Contains the data structure ``CoNetwork`` that stores information about the pathway co-occurrence network. The output from a pathway enrichment analysis in ``feature_pathway_overrepresentation.py`` serves as input into the ``CoNetwork`` constructor. [`CoNetwork documentation. <http://pathcore-demo.herokuapp.com/static/data/docs_pathcore/source/pathcore.html#module-pathcore.network>`_] ============================ network_permutation_test.py ============================ The methods in this module are used to filter the constructed co-occurence network. We implement a permutation test that evaluates and removes edges (pathway-pathway relationships) in the network that cannot be distinguished from a null model of random associations. The null model is created by generating *N* permutations of the network. [`network_permutation_test documentation. <http://pathcore-demo.herokuapp.com/static/data/docs_pathcore/source/pathcore.html#module-pathcore.network_permutation_test>`_] Acknowledgements ---------------- This work was supported by the Penn Institute for Bioinformatics


نحوه نصب


نصب پکیج whl PathCORE-T-1.0.2:

    pip install PathCORE-T-1.0.2.whl


نصب پکیج tar.gz PathCORE-T-1.0.2:

    pip install PathCORE-T-1.0.2.tar.gz