معرفی شرکت ها


Pandas-Market-Predictor-1.0.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Pandas Market Predictor, is a deep learning API written in Python on top of Panda that helping you predict future price (low and high), trend of Financial market assets.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل Pandas-Market-Predictor-1.0.6
نام Pandas-Market-Predictor
نسخه کتابخانه 1.0.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده -
ایمیل نویسنده Ouedraogo Somkieta Rahim Alex <s.r.a.ouedraogo@gmail.com>
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/Pandas-Market-Predictor/
مجوز -
# Pandas Market Predictor ![Pandas Market Predictor](https://github.com/somkietacode/Pandas_Market_Predictor/blob/main/image/pmp.png?raw=true) Pandas Market Predictor, is a deep learning API written in Python on top of Panda that helping you predict future price (low and min), trend of Financial market assets. ## About Pandas Market Predictor Pandas Market Predictor , is a Technical Analysis API written in Python. It was developed with a focus on enabling fast experimentation. *Being able to go from idea to result as fast as possible is key to doing good research.* Pandas Market Predictor is: - **Simple** - **Flexible** - **Powerful** ## First contact with Pandas Market Predictor The core data structures of Pandas Market Predictor are __Historical Market Data__ and __Technical Indicator__ . A sample Data Set should be : | Open | High | Low | Close | Volume | Indicator1 | Indicator2 | |-----:|------:|----:|-----:|-------:|-----------:|-----------:| |0.93767|0.93791|0.93618|0.9363|69414.0|0.9363860952540013|0.9365316260340849| |0.9363|0.93764|0.93566|0.93666|23461.0|0.936477396836001|0.9365549667551604| |0.93666|0.93798|0.93561|0.93724|26907.0|0.9367315978906674|0.936679518254222| You can build your data set by using Pandas-TA lib : https://github.com/twopirllc/pandas-ta For installation run : ``` pip install Pandas-Market-Predictor ``` ## About Feature ### I.Trend Detection The trend detection purpose is to help you find the most probable Future Market Trend on basis of your indicator : ````python from Pandas_Market_Predictor import Pandas_Market_Predictor import pandas as pd if __name__ == "__main__" : # Firt we read the specified data using pandas df = pd.read_csv('dataset.csv') df = df.dropna(axis=0) # Data cleaning # Create predictor MyMarketPredictor = Pandas_Market_Predictor(df) # Predict Trend Indicators = ["Indicator1","Indicator2"] TREND = MyMarketPredictor.Trend_Detection(Indicators,10) # 10 is the percentage of standard Deviation to detect print(MyMarketPredictor.PERCENT_STD) # Print the value of standard deviation percentage #Printing the result print("Buy Trend :",TREND['BUY']) print("Sell Trend :",TREND['SELL']) ```` Result : ```console foo@bar:~$ python test.py Buy Trend : 0 Sell Trend : 0 ``` ### II.The Support Resistance Estimation Tool The Support Resistance Estimation Tool is as his name indicate permit to estimate the Low and High of an asset The question is : What is the standard deviation for an up or down trend given the level of indicator that we have for the current period ? ````python Level = MyMarketPredictor.Support_Resistance_Estimation_Tool(Indicators) print("Support Level :",Level['Support']) print("Resistance Level :",Level['Resistance']) ```` Result : ```console Support Level : 146.42515227768754 Resistance Level : 147.38794619755853 ``` #### UPTREND EXEMPLE ![Pandas Market Predictor UP TREND EXEMPLE ](https://github.com/somkietacode/Pandas_Market_Predictor/blob/main/image/UPTREND.png?raw=true) ### III.The RISK MANAGEMENT TOOL Even if you make very good prediction and having right 99% of time. The 1% Risk could append a day and reduce all your profit to néant so you need to have a good risk reward management. Risk is about 2 things : #### 1. Determine at witch price your setup is invalide ? ````python # Risk Reward Ratio 1 / 3 mean i need to won 1 trade over 3 for being profitable RISK_REWARD_RATIO = 1 / 3 # Stop Loss Calculation Exemple for Up & Down Trend Stop_Loss_Up = MyMarketPredictor.STOP_LOSS_CALCULATOR("UP",Level['Support'],Level['Resistance'],RISK_REWARD_RATIO ) # For Up Trend Stop_Loss_Down = MyMarketPredictor.STOP_LOSS_CALCULATOR("DOWN",Level['Support'],Level['Resistance'],RISK_REWARD_RATIO ) # For Up Down # Printing Result print("The Stop Loss Level for up Trend is", Stop_Loss_Up , "for",RISK_REWARD_RATIO ,"RISK_REWARD_RATIO" ) print("The Stop Loss Level for down Trend is", Stop_Loss_Down , "for",RISK_REWARD_RATIO ,"RISK_REWARD_RATIO" ) ```` ```console The Stop Loss Level for up Trend is 146.10422097106388 for 0.3333333333333333 RISK_REWARD_RATIO The Stop Loss Level for down Trend is 147.7088775041822 for 0.3333333333333333 RISK_REWARD_RATIO ``` #### 2. Determine at witch price to exit ? ````python Trade_Efficiency_Factor = 1 - RISK_REWARD_RATIO Take_Profit_Up = MyMarketPredictor.Take_Profit_CALCULATOR("UP",Level['Support'],Level['Resistance'],Trade_Efficiency_Factor) Take_Profit_Down = MyMarketPredictor.Take_Profit_CALCULATOR("UP",Level['Support'],Level['Resistance'],Trade_Efficiency_Factor) print("The Take Profit Level for up Trend is", Take_Profit_Up , "for",Trade_Efficiency_Factor ,"Trade_Efficiency_Factor" ) print("The Take Profit Level for down Trend is", Take_Profit_Down , "for",Trade_Efficiency_Factor ,"Trade_Efficiency_Factor" ) ```` ```console The Take Profit Level for up Trend is 147.06701489093487 for 0.6666666666666667 Trade_Efficiency_Factor The Take Profit Level for down Trend is 147.06701489093487 for 0.6666666666666667 Trade_Efficiency_Factor ``` --- ## Support You can ask questions and join the development discussion: - [Facebook page](https://www.facebook.com/globalanalysistech) . ---


نیازمندی

مقدار نام
- numpy
- pandas
- Artificial-Neural-Network-Classifier
- Awesome-Linear-Regression
- Auto-Gradient-Boosting
- importlib-metadata


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl Pandas-Market-Predictor-1.0.6:

    pip install Pandas-Market-Predictor-1.0.6.whl


نصب پکیج tar.gz Pandas-Market-Predictor-1.0.6:

    pip install Pandas-Market-Predictor-1.0.6.tar.gz