معرفی شرکت ها


NoxmainNetwork-1.7.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package to create, train and test neural networks with mutiple layers
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NoxmainNetwork-1.7.2
نام NoxmainNetwork
نسخه کتابخانه 1.7.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Noxmain
ایمیل نویسنده noah.finalcut@gmail.com
آدرس صفحه اصلی https://github.com/Noxmain/NoxmainNetwork
آدرس اینترنتی https://pypi.org/project/NoxmainNetwork/
مجوز MIT
# NoxmainNetwork NoxmainNetwork is a Python3 module to create, train and test neural networks with mutiple layers. To use this module you should know how a neural network works. # Content - [Installation](#installation) - [How to use](#how-to-use) # Installation To install the NoxmainNetwork package, just dowload it via pip. To do so execute this command in your Terminal/cmd: ``` pip3 install NoxmainNetwork ``` # How to use After installing the module via pip, you can import it to a python project. Now you can create a neural network by using the class `NoxmainNetwork`. This class has the parameters `neurons, random=True, silent=False`. * `neurons: list` Contains the neurons of the neural network. Each item is a layer with [itemvalue] neurons. The neural network needs at least two layers and one neuron in each layer. * `random: bool` If true (default), the weights will be random when creating the neural network. Otherwise, every weight will be 0.0. * `silent: bool` If false (default), the NoxmainNetwork prints a message when loading or saving. Otherwise, it will not. Example: ``` import NoxmainNetwork nn = NoxmainNetwork.NoxmainNetwork([50, 30, 10]) ``` --- You can train the neural network by using the function `train`. It has the parameters `inputs, targets, learningrate`. * `inputs: list` Contains one training iteration data. The length of the list has to be the number of neurons in the first layer. The values have to be betweet 0 and 1. * `targets: list` Contains the correct ansewrs for the inputs. The length of the list has to be the number of neurons in the last layer. The values have to be betweet 0 and 1. * `learningrate: float` A smaller learningrate results a slower learning but more accurate results. a larger learningrate results faster learning but more inaccurate results. The value of the learningrate has to be between 0 and 1. Example: ``` nn.train([0.05, 0.99, 0.95, 0.88, 0.98, 0.46, 0.59, 0.89, 0.54, 0.27, 0.93, 0.37, 0.43, 0.87, 0.59, 0.04, 0.63, 0.7, 0.86, 0.44, 0.9, 0.66, 0.56, 0.2, 0.75, 0.1, 0.07, 0.36, 0.78, 0.39, 0.9, 0.53, 0.66, 0.46, 0.18, 0.75, 0.43, 0.11, 0.1, 1.0, 0.52, 0.39, 0.84, 0.21, 0.9, 0.84, 0.13, 0.83, 0.31, 0.43], [0.04, 0.52, 0.33, 0.13, 0.8, 0.19, 0.29, 0.27, 0.69, 0.26], 0.1) ``` --- After training the neural network, you can test it by using the funtion `query`. It has the parameter `inputs` and returns a list. * `inputs: list` Contains one training iteration data. The length of the list has to be the number of neurons in the first layer. The values have to be betweet 0 and 1. * `return` The coutput from the NoxmainNetwork. Example: ``` outputs = nn.query([0.98, 0.58, 0.51, 0.48, 0.12, 0.36, 0.14, 0.61, 0.92, 0.69, 0.73, 0.82, 0.12, 0.88, 0.7, 1.0, 0.75, 0.19, 0.43, 0.45, 0.22, 0.55, 0.47, 0.29, 0.27, 0.06, 0.08, 0.36, 0.82, 0.83, 1.0, 0.03, 0.13, 0.89, 0.6, 0.1, 0.35, 0.32, 0.47, 0.12, 0.72, 0.54, 0.08, 0.06, 0.56, 0.07, 0.83, 0.82, 0.87, 0.76]) ``` --- You can save a neural network by using the function `save`. If this file already exists, it will be overwritten. The function has the parameters `name, hide=False`. * `name: str` The filename of the saved NoxmainNetwork. The file will be called [name].npy. * `hide: bool` If true, a dot is appended to the front to hide the file. Is false by default. Example: ``` nn.save("nn") ``` --- You can load a saved neural network by using the function `load`. By loading a neural network the current weights will be overwritten by the loaded ones. The function has the parameters `name, hidden=False`. * `name: str` The filename of the saved NoxmainNetwork. It tries to load the file called [name].npy. * `hidden: bool` If false (default), it tries to load a visible file. Otherwise, it tries to load a hidden file (beginning with a dot). Example: ``` nn.load("nn") ```


نحوه نصب


نصب پکیج whl NoxmainNetwork-1.7.2:

    pip install NoxmainNetwork-1.7.2.whl


نصب پکیج tar.gz NoxmainNetwork-1.7.2:

    pip install NoxmainNetwork-1.7.2.tar.gz