معرفی شرکت ها


NewsSentiment-1.1.9


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Easy-to-use, high-quality target-dependent sentiment classification for English news articles
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NewsSentiment-1.1.9
نام NewsSentiment
نسخه کتابخانه 1.1.9
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Felix Hamborg
ایمیل نویسنده felix.hamborg@uni-konstanz.de
آدرس صفحه اصلی https://github.com/fhamborg/NewsMTSC
آدرس اینترنتی https://pypi.org/project/NewsSentiment/
مجوز -
# NewsSentiment: easy-to-use, high-quality target-dependent sentiment classification for news articles NewsSentiment is an easy-to-use Python library that achieves state-of-the-art performance for target-dependent sentiment classification on news articles. NewsSentiment uses the currently [best performing](https://aclanthology.org/2021.eacl-main.142.pdf) targeted sentiment classifier for news articles. In contrast to regular sentiment classification, targeted sentiment classification allows you to provide a target in a sentence. Only for this target, the sentiment is then predicted. This is more reliable in many cases, as demonstrated by the following simplistic example: "I like Bert, but I hate Robert." We designed NewsSentiment to serve as an easy-to-use wrapper around the sophisticated GRU-TSC model, which was trained on the NewsMTSC dataset consisting of more than 10k labeled sentences sampled from political news articles. More information on the dataset and the model can be found [here](https://aclanthology.org/2021.eacl-main.142.pdf). The dataset, the model, and its source code can be viewed in our [GitHub repository](https://github.com/fhamborg/NewsMTSC). # Installation It's super easy, we promise! You just need a Python 3.7 or Python 3.8 environment. See [here](https://raw.githubusercontent.com/fhamborg/NewsMTSC/main/pythoninfo.md) if you don't have Python or a different version (run `python --version` in a terminal to see your version). Then run: ```bash pip3 install NewsSentiment # without cuda support (choose this if you don't know what cuda is) pip3 install NewsSentiment[cuda] # with cuda support ``` You're all set now :-) # Target-dependent Sentiment Classification Note that using NewsSentiment the first time will take *a few minutes* because it needs to download the fine-tuned language model. Please do not abort this initial download. Since this is a one-time process, future use of NewsSentiment will be much faster. ```python from NewsSentiment import TargetSentimentClassifier tsc = TargetSentimentClassifier() sentiment = tsc.infer_from_text("I like " ,"Peter", " but I don't like Robert.") print(sentiment[0]) sentiment = tsc.infer_from_text("" ,"Mark Meadows", "'s coverup of Trump’s coup attempt is falling apart.") print(sentiment[0]) ``` # How to cite If you use the dataset or model, please cite our [paper](https://www.aclweb.org/anthology/2021.eacl-main.142/) ([PDF](https://www.aclweb.org/anthology/2021.eacl-main.142.pdf)): ``` @InProceedings{Hamborg2021b, author = {Hamborg, Felix and Donnay, Karsten}, title = {NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles}, booktitle = {Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021)}, year = {2021}, month = {Apr.}, location = {Virtual Event}, } ```


نیازمندی

مقدار نام
>=1.19.7 boto3
>=4.0.1 gensim
>=0.8.1 imbalanced-learn
>=2.0.0 jsonlines
>=3.4.3 matplotlib
>=2.6.3 networkx
>=3.0.5 openpyxl
>=1.3.3 pandas
>=2021.10.23 regex
>=2.26.0 requests
>=0.0.46 sacremoses
>=1.0.1 scikit-learn
>=3.2 spacy
>=0.8.9 tabulate
>=4.62.3 tqdm
==4.17.0 transformers
==1.11.0 torch
==10.1 cudatoolkit


زبان مورد نیاز

مقدار نام
<3.9,>=3.7 Python


نحوه نصب


نصب پکیج whl NewsSentiment-1.1.9:

    pip install NewsSentiment-1.1.9.whl


نصب پکیج tar.gz NewsSentiment-1.1.9:

    pip install NewsSentiment-1.1.9.tar.gz