معرفی شرکت ها


NeutronImaging-1.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Neutron Imaging Reduction
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NeutronImaging-1.2
نام NeutronImaging
نسخه کتابخانه 1.2
نگهدارنده ['C.Zhang']
ایمیل نگهدارنده ['zhangc@ornl.gov']
نویسنده C.Zhang
ایمیل نویسنده zhangc@ornl.gov
آدرس صفحه اصلی https://code.ornl.gov/sns-hfir-scse/imaging/neutronimaging
آدرس اینترنتی https://pypi.org/project/NeutronImaging/
مجوز BSD
# NeutronImagingScripts This pakcage contains a suite of Python modules and scripts that are critical for the data reduction of Neutron Imaging at Oak Ridge National Laboratory. ## Overview ## Installation ### General users Install the package (once published on pip) with ```bash $ pip install NeutronImagingScripts ``` ### Developers For developers, it is __highly__ recommended to setup an isolated virtual environment for this repository. After cloning this repository to your local machine, go to the root of this repo and use the follwing commands to install dependencies ```bash $ pip install -r requirements.txt $ pip install -r requirements_dev.txt ``` use the following command to install this package to your path ```bash $ pip install -e . ``` > For unit test, run `pytest tests` at the root of this repo. ## Usage ### Use as a Package Examples of using this package as a Python module are provided as Jupyter Notebooks insdie the `example` folder. ### Use as a commandline tool #### _Generate Configuration File for Data Reduction_ To generate the `json` file that is needed for subsequent data reduction, use ```bash $ generate_config.py IPTS-20267/raw/radiographs IPTS-20267/raw/ob IPTS-20267/raw/df IPTS-20267.json ``` where - `IPTS-20267/raw/radiographs` contains the raw images - `IPTS-20267/raw/ob` contains open beam images (white field) - `IPTS-20267/raw/df` contains dark field images If you would like to have __multiple__ experiment configuration files __nested__ in one `json` file, simply use ```bash $ generate_config.py IPTS-20267/raw/radiographs,IPTS-20267-2/raw/radiographs IPTS-20267/raw/ob IPTS-20267/raw/df IPTS-20267.json ``` notice that: - You can have more than one folder for raw images, but they need to be within the same string separated by `,`. - You can have only __one__ folder for open beam directory - You cna have only __one__ folder for dark field directory The command above will yield a `json` file with the following structure ```json {"IPTS-20267": {"CONFIG_DATA"}, "IPTS-20268": {"CONFIG_DATA"} } ``` The default tolerance for the categorization with respect to aperture positions is 1mm. However, you can change the default value by specify it as below ```bash $ generate_config.py \ IPTS-20267/raw/radiographs \ IPTS-20267/raw/ob \ IPTS-20267/raw/df \ IPTS-20267.json --tolerance=2 ``` #### _MCP Detector correction_ After installing this package, the scripts located in `scripts` should be visible in your Path. Simpy type `mcp_detector_correction.py`, you should see the following ```bash $ mcp_detector_correction.py Usage: mcp_detector_correction [--skipimg] [--verbose] <input_dir> <output_dir> mcp_detector_correction (-h | --help) mcp_detector_correction --version ``` Therefore, you can process the example data with the following command at the root of this repo ```bash $ mcp_detector_correction.py data tmp ``` and you will see the following in your terminal ```bash $ mcp_detector_correction.py data tmp Parsing input Validating input arguments Processing metadata Loading images into memory Perform correction corrected image summary dimension: (916, 512, 512) type: float64 Writing data to tmp ``` > NOTE: make sure you create a `tmp` folder first. ## Developer Notes


نیازمندی

مقدار نام
- docopt
- ipympl
- matplotlib
- numpy
- NeuNorm
- pandas
- tqdm


نحوه نصب


نصب پکیج whl NeutronImaging-1.2:

    pip install NeutronImaging-1.2.whl


نصب پکیج tar.gz NeutronImaging-1.2:

    pip install NeutronImaging-1.2.tar.gz