معرفی شرکت ها


NeuroTorch-0.0.1a0


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

NeuroTorch: A PyTorch-based framework for deep learning in neuroscience.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NeuroTorch-0.0.1a0
نام NeuroTorch
نسخه کتابخانه 0.0.1a0
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Jérémie Gince
ایمیل نویسنده gincejeremie@gmail.com
آدرس صفحه اصلی https://github.com/NeuroTorch/NeuroTorch
آدرس اینترنتی https://pypi.org/project/NeuroTorch/
مجوز Apache 2.0
<p align="center" width="100%"> <img width="40%" src="images/neurotorch.svg"> </p> [![Star on GitHub](https://img.shields.io/github/stars/NeuroTorch/NeuroTorch.svg?style=social)](https://github.com/NeuroTorch/NeuroTorch/stargazers) [![Python 3.6](https://img.shields.io/badge/python-3.9-blue.svg)](https://www.python.org/downloads/release/python-390/) [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](LICENSE) ![Tests Workflow](https://github.com/NeuroTorch/NeuroTorch/actions/workflows/tests.yml/badge.svg) ![Dist Workflow](https://github.com/NeuroTorch/NeuroTorch/actions/workflows/build_dist.yml/badge.svg) ![Doc Workflow](https://github.com/NeuroTorch/NeuroTorch/actions/workflows/docs.yml/badge.svg) ![Publish Workflow](https://github.com/NeuroTorch/NeuroTorch/actions/workflows/publish.yml/badge.svg) # Description It's time to bring deep learning and neuroscience together. In this library, we offer machine learning tools to neuroscientists and we offer neuroscience tools to computer scientists. These two domains were created to be one. ### Current Version (v0.0.1-alpha) What can we do with NeuroTorch in the current version? - Image classification with spiking networks. - Classification of spiking time series with spiking networks. - Time series classification with spiking or Wilson-Cowan. - Reconstruction/Prediction of time series with Wilson-Cowan; - Reconstruction/Prediction of continuous time series with spiking networks. - Backpropagation Through Time. - Anything you are able to do using the modules already created. ### Next Version (v0.0.1-beta) - Learning Algorithm: FullForce. - Learning Algorithm: [Eligibility-Propagation](https://doi.org/10.1038/s41467-020-17236-y). ### Upcoming Version (v0.0.1) - Reinforcement Learning. NeuroTorch is developed to be easy to use, so that you can do simple things in a few lines of code. Moreover NeuroTorch is modular so you can adapt it to your needs relatively quickly. Thanks and stay tuned, because more is coming! This package is part of a postgraduate research project realized by [Jérémie Gince](https://github.com/JeremieGince) and supervised by [Simon Hardy]() and [Patrick Desrosiers](https://github.com/pdesrosiers). Our work was supported by: (1) [UNIQUE](https://www.unique.quebec/home), a FRQNT-funded research center, (2) the [Sentinelle Nord](https://sentinellenord.ulaval.ca/en) program of Université Laval, funded by the Canada First Research Excellence Fund, and (3) [NSERC](https://www.nserc-crsng.gc.ca). # Important Links - Documentation at [https://NeuroTorch.github.io/NeuroTorch/](https://NeuroTorch.github.io/NeuroTorch/). - Github at [https://github.com/NeuroTorch/NeuroTorch/](https://github.com/NeuroTorch/NeuroTorch/). # Installation ## Using pip ```bash pip install neurotorch ``` ## With wheel: 1. Download the .whl file [here](https://github.com/NeuroTorch/NeuroTorch/tree/main/dist); 2. Copy the path of this file on your computer; 3. pip install it with ``` pip install [path].whl ``` ## With pip+git: ```bash pip install git+https://github.com/NeuroTorch/NeuroTorch ``` # Tutorials / Applications See the readme of the tutorials folder [here](tutorials/README.md). ## Image classification with spiking networks (Mnist/Fashion-Mnist) - Tutorial: [Jupyter Notebook](tutorials/mnist/tutorial.ipynb). - Project: [Repository](https://github.com/NeuroTorch/MnistClassification_NeuroTorch). ## Classification of spiking time series (Heidelberg) - Tutorial: [Jupyter Notebook](tutorials/heidelberg/tutorial.ipynb). - Project: [Repository](https://github.com/NeuroTorch/HeidelbergClassification_NeuroTorch). ## Time series classification with spiking networks **Sorry, it's a work in progress, so it's not publish yet.** - Tutorial: [Jupyter Notebook](tutorials/time_series_forecasting_spiking/tutorial.ipynb). - Project: [Repository](https://github.com/NeuroTorch/SNN_TS_Forecasting_NeuroTorch). ## Time series classification with Wilson-Cowan - Tutorial: [Jupyter Notebook](tutorials/time_series_forecasting_wilson_cowan/tutorial.ipynb). # Quick usage preview ```python import neurotorch as nt import torch import pprint n_hidden_neurons = 128 checkpoint_folder = "./checkpoints/checkpoint_000" checkpoint_manager = nt.CheckpointManager(checkpoint_folder) dataloaders = get_dataloaders( batch_size=256, train_val_split_ratio=0.95, ) network = nt.SequentialModel( layers=[ nt.LIFLayer( input_size=nt.Size([ nt.Dimension(None, nt.DimensionProperty.TIME), nt.Dimension(dataloaders["test"].dataset.n_units, nt.DimensionProperty.NONE) ]), output_size=n_hidden_neurons, use_recurrent_connection=True, ), nt.SpyLILayer(output_size=dataloaders["test"].dataset.n_classes), ], name=f"Network", checkpoint_folder=checkpoint_folder, ).build() trainer = nt.ClassificationTrainer( model=network, optimizer=torch.optim.Adam(network.parameters(), lr=1e-3), callbacks=[ checkpoint_manager, ], verbose=True, ) training_history = trainer.train( dataloaders["train"], dataloaders["val"], n_iterations=100, load_checkpoint_mode=nt.LoadCheckpointMode.LAST_ITR, ) training_history.plot(show=True) network.load_checkpoint(checkpoint_manager.checkpoints_meta_path, nt.LoadCheckpointMode.BEST_ITR, verbose=True) predictions = { k: nt.metrics.ClassificationMetrics.compute_y_true_y_pred(network, dataloader, verbose=True, desc=f"{k} predictions") for k, dataloader in dataloaders.items() } accuracies = { k: nt.metrics.ClassificationMetrics.accuracy(network, y_true=y_true, y_pred=y_pred) for k, (y_true, y_pred) in predictions.items() } pprint.pprint(accuracies) ``` # Found a bug or have a feature request? - [Click here to create a new issue.](https://github.com/NeuroTorch/NeuroTorch/issues/new) # Thanks - [Anthony Drouin](https://github.com/AnthoDrouin) who helped develop the Wilson-Cowan application during his 2022 summer internship. - [Antoine Légaré](https://github.com/AntoineLegare) who made the awesome [logo](images/neurotorch.svg) of NeuroTorch. - To my dog Chewy who has been a great help during the whole development. # License [Apache License 2.0](LICENSE) # Citation ``` @misc{Gince2022, title={NeuroTorch: Deep Learning Python Library for Machine Learning and Neuroscience.}, author={Jérémie Gince}, year={2022}, publisher={Université Laval}, url={https://github.com/NeuroTorch}, } ``` ---------------------------------------------------------------------------


نیازمندی

مقدار نام
>=3.5.2 matplotlib
>=1.22.3 numpy
>=57.0.0 setuptools
>=1.11.0 torch
>=0.12.0 torchvision
>=4.64.0 tqdm
>=1.1.1 scikit-learn
>=5.9.1 psutil
>=7.1.2 pytest
>=0.17.1 docutils
>=1.8.0 scipy
>=1.16.0 six
- pythonbasictools


زبان مورد نیاز

مقدار نام
>=3.9 Python


نحوه نصب


نصب پکیج whl NeuroTorch-0.0.1a0:

    pip install NeuroTorch-0.0.1a0.whl


نصب پکیج tar.gz NeuroTorch-0.0.1a0:

    pip install NeuroTorch-0.0.1a0.tar.gz