معرفی شرکت ها


NeuroDynamics-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

NeuroDynamics: A Just-In-Time compilation approach for neuronal dynamics simulation.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NeuroDynamics-0.1.1
نام NeuroDynamics
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Chaoming Wang
ایمیل نویسنده adaduo@outlook.com
آدرس صفحه اصلی https://github.com/PKU-NIP-Lab/BrainPy
آدرس اینترنتی https://pypi.org/project/NeuroDynamics/
مجوز -
.. image:: https://github.com/PKU-NIP-Lab/NumpyBrain/blob/master/docs/images/logo.png :target: https://github.com/PKU-NIP-Lab/NumpyBrain :align: center :alt: logo .. image:: https://readthedocs.org/projects/numpybrain/badge/?version=latest :target: https://numpybrain.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://anaconda.org/oujago/npbrain/badges/version.svg :target: https://anaconda.org/oujago/npbrain .. image:: https://badge.fury.io/py/npbrain.svg :target: https://badge.fury.io/py/npbrain **Note**: *BrainPy is a project under development.* *More features are coming soon. Contributions are welcome.* Why to use BrainPy ===================== ``BrainPy`` is a microkernel framework for SNN (spiking neural network) simulation purely based on **native** python. It only relies on `NumPy <https://numpy.org/>`_. However, if you want to get faster performance,you can additionally install `Numba <http://numba.pydata.org/>`_. With `Numba`, the speed of C or FORTRAN can be obtained in the simulation. ``BrainPy`` wants to provide a highly flexible and efficient SNN simulation framework for Python users. It endows the users with the fully data/logic flow control. The core of the framework is a micro-kernel, and it's easy to understand (see `How NumpyBrain works`_). Based on the kernel, the extension of the new models or the customization of the data/logic flows are very simple for users. Ample examples (such as LIF neuron, HH neuron, or AMPA synapse, GABA synapse and GapJunction) are also provided. Besides the consideration of **flexibility**, for accelerating the running **speed** of NumPy codes, `Numba` is used. For most of the times, models running on `Numba` backend is very fast (see `examples/benchmark <https://github.com/PKU-NIP-Lab/NumpyBrain/tree/master/examples/benchmark>`_). .. figure:: https://github.com/PKU-NIP-Lab/NumpyBrain/blob/master/docs/images/speed_comparison.png :alt: Speed comparison with brian2 :figclass: align-center :width: 350px More details about BrainPy please see our `document <https://numpybrain.readthedocs.io/en/latest/>`_. Installation ============ Install ``BrainPy`` using ``pip``:: $> pip install git+https://github.com/PKU-NIP-Lab/BrainPy Install from source code:: $> python setup.py install The following packages need to be installed to use ``BrainPy``: - Python >= 3.5 - NumPy >= 1.13 - Sympy >= 1.2 - Matplotlib >= 2.0 - autopep8 Packages recommended to install: - Numba >= 0.40.0 - JAX >= 0.1.0 Define a Hodgkin–Huxley neuron model ==================================== .. code-block:: python import npbrain.numpy as np import npbrain as nb def HH(noise=0., E_Na=50., g_Na=120., E_K=-77., g_K=36., E_Leak=-54.387, g_Leak=0.03, C=1.0, Vth=20.): ST = nb.types.NeuState( {'V': -65., 'm': 0., 'h': 0., 'n': 0., 'sp': 0., 'inp': 0.}, help='Hodgkin–Huxley neuron state.\n' '"V" denotes membrane potential.\n' '"n" denotes potassium channel activation probability.\n' '"m" denotes sodium channel activation probability.\n' '"h" denotes sodium channel inactivation probability.\n' '"sp" denotes spiking state.\n' '"inp" denotes synaptic input.\n' ) @nb.integrate def int_m(m, t, V): alpha = 0.1 * (V + 40) / (1 - np.exp(-(V + 40) / 10)) beta = 4.0 * np.exp(-(V + 65) / 18) return alpha * (1 - m) - beta * m @nb.integrate def int_h(h, t, V): alpha = 0.07 * np.exp(-(V + 65) / 20.) beta = 1 / (1 + np.exp(-(V + 35) / 10)) return alpha * (1 - h) - beta * h @nb.integrate def int_n(n, t, V): alpha = 0.01 * (V + 55) / (1 - np.exp(-(V + 55) / 10)) beta = 0.125 * np.exp(-(V + 65) / 80) return alpha * (1 - n) - beta * n @nb.integrate(noise=noise / C) def int_V(V, t, m, h, n, Isyn): INa = g_Na * m ** 3 * h * (V - E_Na) IK = g_K * n ** 4 * (V - E_K) IL = g_Leak * (V - E_Leak) dvdt = (- INa - IK - IL + Isyn) / C return dvdt def update(ST, _t_): m = np.clip(int_m(ST['m'], _t_, ST['V']), 0., 1.) h = np.clip(int_h(ST['h'], _t_, ST['V']), 0., 1.) n = np.clip(int_n(ST['n'], _t_, ST['V']), 0., 1.) V = int_V(ST['V'], _t_, m, h, n, ST['inp']) sp = np.logical_and(ST['V'] < Vth, V >= Vth) ST['sp'] = sp ST['V'] = V ST['m'] = m ST['h'] = h ST['n'] = n ST['inp'] = 0. return nb.NeuType(requires={"ST": ST}, steps=update, vector_based=True) Define an AMPA synapse model ============================ .. code-block:: python def AMPA(g_max=0.10, E=0., tau_decay=2.0): requires = dict( ST=nb.types.SynState(['s'], help='AMPA synapse state.'), pre=nb.types.NeuState(['sp'], help='Pre-synaptic state must have "sp" item.'), post=nb.types.NeuState(['V', 'inp'], help='Post-synaptic neuron must have "V" and "inp" items.') ) @nb.integrate(method='euler') def ints(s, t): return - s / tau_decay def update(ST, _t_, pre): s = ints(ST['s'], _t_) s += pre['sp'] ST['s'] = s @nb.delayed def output(ST, post): post_val = - g_max * ST['s'] * (post['V'] - E) post['inp'] += post_val return nb.SynType(requires=requires, steps=(update, output), vector_based=False) .. _How NumpyBrain works: https://numpybrain.readthedocs.io/en/latest/guides/how_it_works.html


زبان مورد نیاز

مقدار نام
>=3.5 Python


نحوه نصب


نصب پکیج whl NeuroDynamics-0.1.1:

    pip install NeuroDynamics-0.1.1.whl


نصب پکیج tar.gz NeuroDynamics-0.1.1:

    pip install NeuroDynamics-0.1.1.tar.gz