معرفی شرکت ها


NEURAL-py-EEG-0.1.4


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A Neonatal EEG Pre-Processing and Feature Set in python
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NEURAL-py-EEG-0.1.4
نام NEURAL-py-EEG
نسخه کتابخانه 0.1.4
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Brian Murphy
ایمیل نویسنده Brian.M.Murphy@umail.ucc.ie
آدرس صفحه اصلی https://github.com/BrianMur92/NEURAL_py_EEG_feature_set
آدرس اینترنتی https://pypi.org/project/NEURAL-py-EEG/
مجوز -
NEURAL_py: A Neonatal EEG Feature Set in python ============================================ Python code that replicates the [MATLAB](https://github.com/otoolej/qEEG_feature_set) version of the NEURAL feature set. The code is used to generate a set of quantitative features from multichannel EEG recordings. Features include amplitude measures, spectral measures, and basic connectivity measures (across hemisphere's only). Also, for preterm EEG (assuming gestational age < 32 weeks), will generate features from bursts annotations (e.g. maximum inter-burst interval). Burst annotations require a separate package, also available on [github](https://github.com/otoolej/py_burst_detector). Full details of the methods can be found in: `JM O’Toole and GB Boylan (2017). NEURAL: quantitative features for newborn EEG using Matlab. ArXiv e-prints, arXiv:1704.05694` available at https://arxiv.org/abs/1704.05694. --- [Requirements](#requirements) | [Use](#use) | [Quantitative features](#quantitative-features) | [Files](#files) | [Test computer setup](#test-computer-setup) | [Licence](#licence) | [References](#references) | [Contact](#contact) ## Requirements: Python 3.7 or newer with the following packages installed | Package | Version installed | | ------------- |:------------------:| | mne | 0.18.2 | | pandas | 0.25.1 | | numpy | 1.17.1 | | matplotlib | 3.1.1 | | scipy | 1.3.1 | | pyEDFlib | 0.1.14 | ## Use Set path `(path_to_NEURAL_py)` to the folder location of NEURAL_py. Then the following will load the main functions: ``` import sys sys.path.append(path_to_NEURAL_py) import utils, preprocessing_EEG, generate_all_features ``` As an example, generate simulated EEG and calculate relative spectral power, standard deviation of range-EEG, and brain symmetry index: ``` # generate EEG-like data (coloured Gaussian noise) data_st = utils.gen_test_EEGdata(5*60,64,1) # define feature set (or can define in neural_parameters.m): feature_set = ['spectral_relative_power','rEEG_SD', 'connectivity_BSI'] # estimate features: feats_per_epochs, feat_pd_names, feat_st, feats_median_ch, feats_median_all = generate_all_features.generate_all_features(data_st, feat_set=feature_set) print('Features extracted') print(feat_pd_names) ``` See the `demos.py` file for further examples. To run the demo code without previously adding the package: ``` import sys sys.path.append(path_to_NEURAL_py) import demos demos.artefact_removal_examples() demos.generate_a_subset_of_features_example() demos.generate_all_features_example() demos.preprocessing_and_feature_extraction() demos.load_edf_preprocessing_and_feature_extraction() ``` All parameters are set the file `utils.NEURAL_parameters`. ## Quantitative features The feature set contains amplitude, spectral, connectivity, and burst annotation features. Amplitude features include range-EEG (D. O’ Reilly et al., 2012; see [references](#references)), a clearly-defined alternative to amplitude-integrated EEG (aEEG). All features are generated for four different frequency bands (typically 0.5–4, 4–7, 7–13, and 13–30 Hz), with some exceptions. The following table describes the features in more detail: | feature name | description | FB | |----------------------------|-------------------------------------------------------------------------------|-----| | spectral\_power | spectral power: absolute | yes | | spectral\_relative\_power | spectral power: relative (normalised to total spectral power) | yes | | spectral\_flatness | spectral entropy: Wiener (measure of spectral flatness) | yes | | spectral\_entropy | spectral entropy: Shannon | yes | | spectral\_diff | difference between consecutive short-time spectral estimates | yes | | spectral\_edge\_frequency | cut-off frequency (fc): 95% of spectral power contained between 0.5 and fc Hz | no | | FD | fractal dimension | yes | | amplitude\_total\_power | time-domain signal: total power | yes | | amplitude\_SD | time-domain signal: standard deviation | yes | | amplitude\_skew | time-domain signal: skewness (absolute value) | yes | | amplitude\_kurtosis | time-domain signal: kurtosis | yes | | amplitude\_env\_mean | envelope: mean value | yes | | amplitude\_env\_SD | envelope: standard deviation (SD) | yes | | connectivity\_BSI | brain symmetry index (see Van Putten 2007) | yes | | connectivity\_corr | correlation (Spearman) between envelopes of hemisphere-paired channels | yes | | connectivity\_coh\_mean | coherence: mean value | yes | | connectivity\_coh\_max | coherence: maximum value | yes | | connectivity\_coh\_freqmax | coherence: frequency of maximum value | yes | | rEEG\_mean | range EEG: mean | yes | | rEEG\_median | range EEG: median | yes | | rEEG\_lower\_margin | range EEG: lower margin (5th percentile) | yes | | rEEG\_upper\_margin | range EEG: upper margin (95th percentile) | yes | | rEEG\_width | range EEG: upper margin - lower margin | yes | | rEEG\_SD | range EEG: standard deviation | yes | | rEEG\_CV | range EEG: coefficient of variation | yes | | rEEG\_asymmetry | range EEG: measure of skew about median | yes | | IBI\_length\_max | burst annotation: maximum (95th percentile) inter-burst interval | no | | IBI\_length\_median | burst annotation: median inter-burst interval | no | | IBI\_burst\_prc | burst annotation: burst percentage | no | | IBI\_burst\_number | burst annotation: number of bursts | no | FB: features generated for each frequency band (FB) ## Files Some python files (.py files) have a description and an example in the header. To read this header, type `help(filename)` in the console after importing (`import filename`). Directory structure is as follows: ``` ├── amplitude_features.py # amplitude features ├── connectivity_features.py # hemisphere connectivity features ├── demos.py # python file to give examples on how to use the code ├── fd_features.py # fractal dimension features ├── generate_all_features.py # main function: generates feature set on EEG ├── IBI_features.py # features from the burst annotations ├── LICENSE.md # license file ├── mfiltfilt.py # MATLAB implementation of filtfilt function ├── preprocessing_EEG.py # loads EEG from EDF files (including artefact removal) ├── README.md # readme file describing project ├── rEEG.py # range-EEG (similar to aEEG) ├── spectral_features.py # spectral features └── utils.py # misc. functions ``` ## Test computer setup - hardware: Intel Core i7-8700K @ 3.2GHz; 32GB memory. - operating system: Windows 10 64-bit - software: python 3.7 ## Licence ``` Copyright (c) 2020, Brian M. Murphy and John M. O' Toole, University College Cork All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University College Cork nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ``` ## References 1. JM O’Toole and GB Boylan (2017). NEURAL: quantitative features for newborn EEG using Matlab. ArXiv e-prints, arXiv:[1704.05694](https://arxiv.org/abs/1704.05694). 2. D O’Reilly, MA Navakatikyan, M Filip, D Greene, & LJ Van Marter (2012). Peak-to-peak amplitude in neonatal brain monitoring of premature infants. Clinical Neurophysiology, 123(11):2139–2153. 3. MJAM van Putten (2007). The revised brain symmetry index. Clinical Neurophysiology, 118(11):2362–2367. 4. T Higuchi (1988). Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31:277–283. 5. MJ Katz (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3):145–156. 6. AV Oppenheim, RW Schafer. Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ 07458, 1999. 7. JM O’ Toole, GB Boylan, S Vanhatalo, NJ Stevenson (2016). Estimating functional brain maturity in very and extremely preterm neonates using automated analysis of the electroencephalogram. Clinical Neurophysiology, 127(8):2910–2918 8. JM O’ Toole, GB Boylan, RO Lloyd, RM Goulding, S Vanhatalo, NJ Stevenson (2017). Detecting Bursts in the EEG of Very and Extremely Premature Infants using a Multi-Feature Approach. Medical Engineering and Physics, vol. 45, pp. 42-50, 2017. [DOI:10.1016/j.medengphy.2017.04.003](https://dx.doi.org/10.1016/j.medengphy.2017.04.003) 9. JM O'Toole and GB Geraldine (2019). Quantitative Preterm EEG Analysis: The Need for Caution in Using Modern Data Science Techniques. Frontiers in Pediatrics 7, 174 [DOI:10.3389/fped.2019.00174](https://doi.org/10.3389/fped.2019.00174) ## Contact Brian M. Murphy Neonatal Brain Research Group, [INFANT Research Centre](https://www.infantcentre.ie/), Department of Paediatrics and Child Health, Room 2.18 UCC Academic Paediatric Unit, Cork University Hospital, University College Cork, Ireland - email: Brian.M.Murphy AT umail dot ucc dot ie


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl NEURAL-py-EEG-0.1.4:

    pip install NEURAL-py-EEG-0.1.4.whl


نصب پکیج tar.gz NEURAL-py-EEG-0.1.4:

    pip install NEURAL-py-EEG-0.1.4.tar.gz