معرفی شرکت ها


NDBC-1.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A package to automate the loading of NDBC data to a custom object.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل NDBC-1.1.1
نام NDBC
نسخه کتابخانه 1.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده C. Ryan Manzer
ایمیل نویسنده ryan@gensci.org
آدرس صفحه اصلی https://github.com/GenSci/NDBC
آدرس اینترنتی https://pypi.org/project/NDBC/
مجوز -
# NDBC ![alt text](http://www.ndbc.noaa.gov/images/nws/noaaleft.jpg "NOAA") ![alt text](http://www.ndbc.noaa.gov/images/nws/ndbc_title.jpg "NDBC") This repository represents my attempts to build out Python class(es) to facilitate the acquisition, analysis, and visualization of National Data Buoy Center (NDBC) data. The goal is to develop a set of APIs to facilitate rapid discovery of data resources, exploratory data analysis, and allow integration into automated data workflows. ## NDBC.py This file defines the DataBuoy class. The purpose of this class is to allow a user to define a specific data buoy they wish to gather data from and provide the user with methods to collect and analyze this data. Dependencies are listed in `requirements.txt` ## Usage #### Installation Install using pip from PyPI ``` pip install NDBC ``` Then you are ready to start using this module in exploratory data analyses and scripted workflows. #### Methods of DataBuoy Class `.set_station_id` If a DataBuoy class has been instantiated without any `station_id` argument, this method allows for setting a station id ``` from NDBC.NDBC import DataBuoy DB = DataBuoy() DB.set_station_id('46042') # <- Either strings or numbers are acceptable ``` `.get_station_metadata()` Perform a scrape of the public webpage for a specified data station and save a dictionary of available metadata to the `.station_info` property. This is only available if a DataBuoy has a valid `station_id` set (either during class instantiation or using the `set_station_id` method). ``` from NDBC.NDBC import DataBuoy DB = DataBuoy(46042) DB.get_station_metadata() DB.station_info { 'Air temp height': '4 m above site elevation', 'Anemometer height': '5 m above site elevation', 'Barometer elevation': 'sea level', 'Sea temp depth': '0.6 m below water line', 'Site elevation': 'sea level', 'Watch circle radius': '1789 yards', 'Water depth': '1645.9 m', 'lat': '36.785 N', 'lon': '122.398 W'} ``` - `.get_data(datetime_index=False)` After importing, the DataBuoy class is instantiated with the ID of the station from which historical data is sought. Then data may be gathered for the years and months specified. If no time period is specified, the most recent full month available is retrieved. The default behavior is to append datetime values built from date part columns (YY, MM, DD, etc.) to a column 'datetime'. If value `True` is passed as the `datetime_index` argument, the datetime values will be used as index values for the returned dataframe. In some cases this is advantageous for time series analyses. ``` from NDBC.NDBC import DataBuoy n42 = DataBuoy(46042) # <- String or numeric station ids are valid n42.get_data(datetime_index=True) # <- no year, month argumets so latest full month is retrieved. Default data type is 'stdmet' Oct not available. # <- Where data is missing, messages are returned to the terminal via a logger.warning() call Sep not available. n42.data # <- anticipating additional data collection methods, the .data property returns a dictionary. Indiviudual data products are returned as pandas DataFrame objects # Datetime objects are compiled from individual year, month, day, hour, minute columns and used as the index to support # slicing data by time frames. {'stdmet': WDIR WSPD GST WVHT DPD APD MWD PRES ATMP WTMP DEWP VIS TIDE 2019-07-31 23:50:00 298 3.6 5.2 1.25 7.69 5.37 303 1015.1 13.4 15.2 999.0 99.0 99.00 2019-08-01 00:50:00 301 5.7 7.2 1.26 7.14 5.42 306 1014.8 13.4 15.3 999.0 99.0 99.00 2019-08-01 01:50:00 323 6.6 8.3 1.33 7.14 5.47 312 1014.5 13.2 15.1 999.0 99.0 99.00 2019-08-01 02:50:00 347 5.8 7.7 1.32 7.69 5.15 319 1014.5 12.7 15.1 999.0 99.0 99.00 2019-08-01 03:50:00 353 5.6 7.2 1.26 7.69 5.31 325 1014.9 12.6 15.0 999.0 99.0 99.00 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 2019-08-31 18:50:00 999 6.2 7.4 0.87 13.79 4.67 186 1014.6 17.0 17.2 999.0 99.0 99.00 2019-08-31 19:50:00 999 6.8 8.3 0.83 13.79 4.56 178 1014.2 17.2 17.3 999.0 99.0 99.00 2019-08-31 20:50:00 999 6.5 7.8 0.89 13.79 4.38 195 1013.8 17.5 17.4 999.0 99.0 99.00 2019-08-31 21:50:00 999 7.5 8.9 0.95 13.79 4.52 190 1013.1 17.5 17.3 999.0 99.0 99.00 2019-08-31 22:50:00 999 8.0 9.4 0.95 13.79 4.09 171 1012.7 17.7 17.1 999.0 99.0 99.00 [741 rows x 13 columns]} ``` By default the `get_data()` function will fetch the most current month's data. However, the function can take lists of years & months ([int]) to specify a timeframe. ``` >>> n42 = NDBC.DataBuoy('46042') >>> n42.get_data(months=[1,2], years=range(2019, 2020), datetime_index=True, data_type='swden) Year 2019 not available. Year 2020 not available. >>> n42.data {'swden': {'data': .0200 .0325 .0375 .0425 .0475 .0525 .0575 .0625 .0675 .0725 .0775 .0825 .0875 ... .3000 .3100 .3200 .3300 .3400 .3500 .3650 .3850 .4050 .4250 .4450 .4650 .4850 2021-01-01 00:40:00 0.0 0.0 0.0 0.00 1.17 9.11 24.25 24.95 15.84 20.44 26.48 20.63 12.72 ... 0.28 0.31 0.19 0.20 0.13 0.07 0.06 0.05 0.03 0.01 0.01 0.00 0.0 2021-01-01 01:40:00 0.0 0.0 0.0 0.00 0.00 13.76 26.55 22.40 24.12 30.09 23.41 15.74 14.95 ... 0.25 0.16 0.12 0.16 0.06 0.16 0.06 0.03 0.05 0.02 0.01 0.00 0.0 2021-01-01 02:40:00 0.0 0.0 0.0 0.00 0.93 4.40 16.03 33.95 41.48 38.02 31.47 18.88 14.59 ... 0.21 0.15 0.18 0.14 0.14 0.10 0.07 0.05 0.03 0.02 0.01 0.00 0.0 2021-01-01 03:40:00 0.0 0.0 0.0 0.07 1.14 6.95 27.94 45.68 41.92 30.11 25.03 19.52 10.93 ... 0.22 0.20 0.16 0.09 0.08 0.15 0.09 0.04 0.02 0.01 0.00 0.01 0.0 2021-01-01 04:40:00 0.0 0.0 0.0 0.00 0.76 3.64 11.23 18.23 29.84 27.19 12.85 11.20 9.77 ... 0.13 0.17 0.14 0.16 0.08 0.08 0.07 0.08 0.05 0.01 0.01 0.00 0.0 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 2021-02-28 19:40:00 0.0 0.0 0.0 0.00 0.00 0.00 0.06 0.25 1.42 2.50 9.48 11.48 8.46 ... 0.21 0.13 0.11 0.08 0.10 0.04 0.02 0.02 0.03 0.01 0.00 0.00 0.0 2021-02-28 20:40:00 0.0 0.0 0.0 0.02 0.05 0.08 0.24 1.02 3.97 4.97 4.99 8.31 10.09 ... 0.21 0.07 0.09 0.06 0.05 0.10 0.04 0.03 0.01 0.01 0.00 0.00 0.0 2021-02-28 21:40:00 0.0 0.0 0.0 0.00 0.00 0.15 0.30 0.36 1.63 4.18 6.85 7.82 7.98 ... 0.12 0.11 0.09 0.08 0.04 0.05 0.06 0.02 0.01 0.01 0.00 0.00 0.0 2021-02-28 22:40:00 0.0 0.0 0.0 0.00 0.01 0.09 0.10 0.32 2.84 3.82 3.91 4.92 5.17 ... 0.17 0.09 0.13 0.05 0.05 0.08 0.06 0.03 0.01 0.01 0.00 0.00 0.0 2021-02-28 23:40:00 0.0 0.0 0.0 0.00 0.00 0.00 0.18 0.25 1.78 3.97 5.08 4.98 5.40 ... 0.07 0.10 0.11 0.08 0.08 0.06 0.03 0.02 0.01 0.01 0.00 0.00 0.0 [1413 rows x 47 columns]}} ``` Likely due to my own biases in my research interests, the `get_data()` function will default to fetching standard meteorological data. However, users can specify different data packages like so `get_data(data_type='cwind')`. To view which data packages are currently supported examine the `DataBuoy.DATA_PACKAGES` attribute: ``` {'cwind': {'name': 'Continous Wind Data', 'url_char': 'c'}, 'srad': {'name': 'Solar radiation data', 'url_char': 'r'}, 'stdmet': {'name': 'Standard meteoroligcal data', 'url_char': 'h'}, 'swden': {'name': 'Spectral Wave Density data', 'url_char': 'w'}, 'swdir': {'name': 'Spectral wave (alpha1) direction data', 'url_char': 'd'}, 'swdir2': {'name': 'Spectral wave (alpha2) direction data', 'url_char': 'i'}, 'swr1': {'name': 'Spectral wave (r1) direction data', 'url_char': 'j'}, 'swr2': {'name': 'Spectral wave (r2) direction data', 'url_char': 'k'}} ``` Using the pandas DataFrame to store the returned data provides access to the wide array of methods the pandas package provides. - `.save(filename(optional))` Saves an instantiated DataBuoy object as JSON to a file. If `filename` is not specified the file name will follow the `databuoy_{station_id}.json` convention. ``` db = DataBuoy(46042) db.save('/path/to/file/my_filename.json') ``` _classmethod_ - `.load(filename)` Instantiate a DataBuoy object from a file, generated by the `.save()` method. ``` db = DataBuoy.load('/path/to/file.json') ```


زبان مورد نیاز

مقدار نام
>=3.7 Python


نحوه نصب


نصب پکیج whl NDBC-1.1.1:

    pip install NDBC-1.1.1.whl


نصب پکیج tar.gz NDBC-1.1.1:

    pip install NDBC-1.1.1.tar.gz