معرفی شرکت ها


MyoSuite-1.2.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Musculoskeletal environments simulated in MuJoCo
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MyoSuite-1.2.3
نام MyoSuite
نسخه کتابخانه 1.2.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده MyoSuite Authors - Vikash Kumar (Meta AI), Vittorio Caggiano (Meta AI), Huawei Wang (University of Twente), Guillaume Durandau (University of Twente), Massimo Sartori (University of Twente)
ایمیل نویسنده vikashplus@gmail.com
آدرس صفحه اصلی -
آدرس اینترنتی https://pypi.org/project/MyoSuite/
مجوز Apache 2.0
<!-- ================================================= # Copyright (c) Facebook, Inc. and its affiliates Authors :: Vikash Kumar (vikashplus@gmail.com), Vittorio Caggiano (caggiano@gmail.com) ================================================= --> <img src="https://github.com/facebookresearch/myosuite/blob/main/docs/source/images/Full%20Color%20Horizontal%20wider.png?raw=true" width=800> [![Supporting MyoChallenge](https://img.shields.io/static/v1?label=Supporting&message=NeurIPS-MyoChallenge2022&color=informational&link=https://github.com/ET-BE/myoChallengeEval)](https://github.com/ET-BE/myoChallengeEval) [![Support Ukraine](https://img.shields.io/badge/Support-Ukraine-FFD500?style=flat&labelColor=005BBB)](https://opensource.facebook.com/support-ukraine) ![PyPI](https://img.shields.io/pypi/v/myosuite) [![Documentation Status](https://readthedocs.org/projects/myosuite/badge/?version=latest)](https://myosuite.readthedocs.io/en/latest/) ![PyPI - License](https://img.shields.io/pypi/l/myosuite) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/facebookresearch/myosuite/blob/main/docs/CONTRIBUTING.md) [![Downloads](https://pepy.tech/badge/myosuite)](https://pepy.tech/project/myosuite) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1U6vo6Q_rPhDaq6oUMV7EAZRm6s0fD1wn?usp=sharing) `MyoSuite` is a collection of musculoskeletal environments and tasks simulated with the [MuJoCo](http://www.mujoco.org/) physics engine and wrapped in the OpenAI ``gym`` API to enable the application of Machine Learning to bio-mechanic control problems. [Full task details](https://github.com/facebookresearch/myosuite/blob/main/docs/source/suite.rst#tasks) | [Baselines](https://github.com/facebookresearch/myosuite/tree/main/myosuite/agents/baslines_NPG) | [Documentation](https://myosuite.readthedocs.io/en/latest/) | [Tutorials](https://github.com/facebookresearch/myosuite/tree/main/docs/source/tutorials) | 🔥🆕 [NeurIPS-MyoChallenge 2022](https://sites.google.com/view/myochallenge) Below is an overview of the tasks in the MyoSuite. <img width="1240" alt="TasksALL" src="https://github.com/facebookresearch/myosuite/blob/main/docs/source/images/myoSuite_All.png?raw=true"> ## Getting Started You will need Python 3.7.1 or later versions. At this moment, the library has been tested **only on MacOs and Linux** with [MuJoCo v2.1.0](https://github.com/deepmind/mujoco/releases/tag/2.1.0). It is recommended to use [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links) and to create a separate environment with: ``` bash conda create --name myosuite python=3.7.1 conda activate myosuite ``` It is possible to install MyoSuite with: ``` bash pip install -U myosuite ``` for advanced installation, see [here](setup/README.md). Test your installation using the following command (this will return also a list of all the current environments): ``` bash python myosuite/tests/test_myo.py ``` You can also visualize the environments with random controls using the command below: ``` $ python myosuite/utils/examine_env.py --env_name myoElbowPose1D6MRandom-v0 ``` **NOTE:** If the visualization results in a GLFW error, this is because `mujoco-py` does not see some graphics drivers correctly. This can usually be fixed by explicitly loading the correct drivers before running the python script. See [this page](setup/README.md#known-issues) for details. ## Examples It is possible to create and interface with MyoSuite environments just like any other OpenAI gym environments. For example, to use the `myoElbowPose1D6MRandom-v0` environment, it is possible simply to run: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1U6vo6Q_rPhDaq6oUMV7EAZRm6s0fD1wn?usp=sharing) ```python import myosuite import gym env = gym.make('myoElbowPose1D6MRandom-v0') env.reset() for _ in range(1000): env.sim.render(mode='window') env.step(env.action_space.sample()) # take a random action env.close() ``` You can find [tutorials](https://github.com/facebookresearch/myosuite/tree/main/docs/source/tutorials#tutorials) on how to load MyoSuite models/tasks, train them, and visualize their outcome. Also, you can find [baselines](https://github.com/facebookresearch/myosuite/tree/main/myosuite/agents) to test some pre-trained policies. ## License MyoSuite is licensed under the [Apache License](LICENSE). ## Citation If you find this repository useful in your research, please consider giving a star ⭐ and cite our [arXiv paper](https://arxiv.org/abs/2205.13600) by using the following BibTeX entrys. ```BibTeX @Misc{MyoSuite2022, author = {Vittorio, Caggiano AND Huawei, Wang AND Guillaume, Durandau AND Massimo, Sartori AND Vikash, Kumar}, title = {MyoSuite -- A contact-rich simulation suite for musculoskeletal motor control}, publisher = {arXiv}, year = {2022}, howpublished = {\url{https://github.com/facebookresearch/myosuite}}, year = {2022} doi = {10.48550/ARXIV.2205.13600}, url = {https://arxiv.org/abs/2205.13600}, } ```


نیازمندی

مقدار نام
- click
- sk-video
==0.13 gym
- free-mujoco-py
- termcolor
- flatten-dict
==3.7.0 h5py


زبان مورد نیاز

مقدار نام
>=3.7.1 Python


نحوه نصب


نصب پکیج whl MyoSuite-1.2.3:

    pip install MyoSuite-1.2.3.whl


نصب پکیج tar.gz MyoSuite-1.2.3:

    pip install MyoSuite-1.2.3.tar.gz