معرفی شرکت ها


MovieRecEngine-0.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

MovieRecEngine is a simple collaborative filtering based library using Pytorch Sequential Neural Network to make prediction of user ratings for an unseen movie based on his/her past interests/ratings provided.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MovieRecEngine-0.1.1
نام MovieRecEngine
نسخه کتابخانه 0.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Ashwin
ایمیل نویسنده imashwin02@gmail.com
آدرس صفحه اصلی https://github.com/MrR0b0t-23/MovieRecEngine
آدرس اینترنتی https://pypi.org/project/MovieRecEngine/
مجوز -
# MovieRecEngine MovieRecEngine be an abbreviation of Movie Recommendation Engine. This is a simple collaborative filtering based library using Pytorch Sequential Neural Network to make your Movie Recommendation System easy. *This library is in very early-stage currently! So, there might be remarkable changes.* ## Installation Use the package manager [pip](https://pip.pypa.io/en/stable/) to install MovieRecEngine. ```bash pip install MovieRecEngine ``` ## Description MovieRecEngine uses collaborative filtering to find similarities between users and items simultaneously to provide recommendations. This allows for serendipitous recommendations; that is, collaborative filtering models can recommend an item to user A based on the interests of a similar user B. Furthermore, the embeddings can be learned automatically, without relying on hand-engineering of features. MovieRecEngine uses pyptorch sequential Neural Networks to train a model that can predict users rating for an unseen movie based on his/her past interests/ratings provided. MovieRecEngine, uses [tez](https://pypi.org/project/tez/) simple pytorch trainer that supports cpu and gpu training. ## How to use MovieRecEngine * To train a model using MovieRecEngine, define a Dataset that contains columns "userId", "movieId", "ratings". Example [Train sample](https://github.com/MrR0b0t-23/MovieRecEngine/blob/main/Examples/Train_Sample.csv) * Create a object for ```Train ``` class in MovieRecEngine library with parameters trainDatasetPath, userLabelEncoderPath, movieLabelEncoderPath, validDatasetSize, trainBatchSize, validBatchSize, device, nEpochs, trainedModelPath, randomState. * Train the model by calling ```train``` function in ```Train``` class. * To predict user movie ratings using MovieRecEngine, define a Dataset that contains columns "userId", "movieId", "ratings". Example [Predict sample](https://github.com/MrR0b0t-23/MovieRecEngine/blob/main/Examples/Predict_Sample.csv) *NOTE: "userId" needs to contain 1 unique userId.* * Create a object for ```Predict ``` class in MovieRecEngine library with parameters datasetPath, userLabelEncoderPath, movieLabelEncoderPath, trainedModelPath, predictBatchSize, device. * Predict user movie ratings by calling ```predict``` function in ```Predict ``` class. ## Parameters 1. ```Train``` class: - trainDatasetPath ==> Path for your training Dataset. - userLabelEncoderPath ==> Path in which you want to save user Label Encoder (this will be used in your prediction) - movieLabelEncoderPath ==> Path in which you want to save movie Label Encoder (this will be used your prediction) - validDatasetSize ==> Test size for train_test_split - trainBatchSize ==> The number of train samples to work through before updating the internal model parameters. - validBatchSize ==> The number of test samples to work through before updating the internal model parameters. - device ==> Device in which you want to train your model 'cuda' or 'cpu'. Default 'cpu'. - nEpochs ==> The number times that the learning algorithm will work through the entire training dataset. - trainedModelPath ==> Path to save your trained model (this will be used in your prediction) - randomState ==> Random State values for train_test_split 2. ```Predict``` class: - datasetPath ==> Path for your prediction Dataset. - userLabelEncoderPath ==> Path in which you saved user Label Encoder (while training) - movieLabelEncoderPath ==> Path in which you saved movie Label Encoder (while training) - trainedModelPath ==> Path in which you saved Trained model (while training) - predictBatchSize ==> The number of prediction samples to work - device ==> Device in which you want to train your model 'cuda' or 'cpu'. Default 'cpu'. ## Contributing Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something doesn't work, please create an [issue](https://github.com/MrR0b0t-23/MovieRecEngine/issues).


نیازمندی

مقدار نام
>=1.6.0 torch
>=0.1.2 tez
>=1.2.2 pandas


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl MovieRecEngine-0.1.1:

    pip install MovieRecEngine-0.1.1.whl


نصب پکیج tar.gz MovieRecEngine-0.1.1:

    pip install MovieRecEngine-0.1.1.tar.gz