معرفی شرکت ها


MongoLite-1.5


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python MongoDB light toolkit
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MongoLite-1.5
نام MongoLite
نسخه کتابخانه 1.5
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Namlook
ایمیل نویسنده UNKNOWN
آدرس صفحه اصلی http://namlook.github.com/mongolite/
آدرس اینترنتی https://pypi.org/project/MongoLite/
مجوز New BSD License
========= MongoLite ========= MongoLite is a fork of MongoKit_ by the same author. It aims to come back to simplicity by stripping a lot of features and replacing them with best practices. The goal of MongoLite is to stick as much as possible to the pymongo api. MongoLite always choose speed over syntaxic sugar, this is why you won't see validation or dot notation features in this project. .. _MongoKit : http://namlook.github.com/mongokit/ MongoLite is perfect for who wants a thin layer on top of pymongo and don't care about validation stuff. A mongolite is a beautiful stone_ .. _stone : http://www.mindat.org/photos/0656330001207867080.jpg .. _MongoKit : http://namlook.github.com/mongokit/ .. topic:: **Your data is clean**: "Tools change, not data". In order to follow this "credo", just like MongoKit, MongoLite won't add any information into your data saved into the database. So if you need to use other mongo tools or ODMs in other languages, your data won't be polluted by MongoLite's stuff. Features ======== * schema less feature * inheritance and polymorphisme support * skeleton generation (your object is automaticaly filled by the correct fields) * nested and complex schema declaration * default values features * random query support (which returns a random document from the database) * json helpers * GridFS support .. Go to the full documentation_ . .. _documentation : http://github.com/namlook/MongoLite/wiki A quick example =============== A Document declaration look like that:: >>> from mongolite import * >>> import datetime >>> connection = Connection() >>> @connection.register ... class BlogPost(Document): ... __database__ = 'test' ... __collection__ = 'example' ... skeleton = { ... 'title':unicode, ... 'body':unicode, ... 'author':unicode, ... 'date_creation':datetime.datetime, ... 'rank':int ... } ... optional = { ... 'tags': [unicode], ... } ... default_values = {'rank':0, 'date_creation':datetime.datetime.utcnow} ... >>> blogpost = con.BlogPost() # this use the db "test" from `__database__` and the collection "example" from `__collection__` >>> blogpost # the skeleton is automatically generated (based on the skeleton attribute) {'body': None, 'title': None, 'date_creation': datetime.datetime(...), 'rank': 0, 'author': None} >>> blogpost['title'] = u'my title' >>> blogpost['body'] = u'a body' >>> blogpost['author'] = u'me' >>> blogpost['tags'] = ['about me', 'first post'] >>> blogpost {'body': u'a body', 'title': u'my title', 'date_creation': datetime.datetime(...), 'rank': 0, 'author': u'me', 'tags': [u'about me', u'first post']} >>> blogpost.save() Note that, while fields in `skeleton` should be present in the document, fields in `optional` attribute are not generated by default. It aims to be for documentation only... To access those fields, use the following convention: **for fields in skeleton**:: >>> title = blogpost['title'] **for fields in optional**:: >>> tags = blogpost.get('tags', []) MongoLite is written on top of pymongo. All the pymongo's API is accessible and the results are wrapped into Document objects: >>> blogpost = con.BlogPost.find_one() # this is a blogpost object However, if you need more performances, you can use the pymongo layer directly: >>> blogpost = con.test.example.find_one() # this is a dict Suggestion and patches are really welcome. If you find mistakes in the documentation (english is not my primary langage) feel free to contact me. You can find me (namlook) on twitter_. .. _twitter : http://twitter.com/namlook Recent Change Log ================= v1.5 ---- * support pymongo 2.4 v1.4 ---- * support pymongo 2.3 * added fix for unconditional access to __wrap on cursors * add __getitem__ suport on Cursor v1.3 ---- * change pymongo.objectid -> bson.objectid as this alias was deleted in pymongo 2.2 * add exception in case of bad behavior with inherited queries v1.2 ---- * fix generate_indexes() and slightly api change v1.1 ---- * add inherited queries support * add serialize support * fix pymongo's version v1.0 ---- * fork from MongoKit, strip all unwanted features


نحوه نصب


نصب پکیج whl MongoLite-1.5:

    pip install MongoLite-1.5.whl


نصب پکیج tar.gz MongoLite-1.5:

    pip install MongoLite-1.5.tar.gz