معرفی شرکت ها


MetEvolSim-0.6.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

MetEvolSim (Metabolome Evolution Simulator) Python Package
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MetEvolSim-0.6.2
نام MetEvolSim
نسخه کتابخانه 0.6.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Charles Rocabert, Gábor Boross, Orsolya Liska, Balázs Papp
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/charlesrocabert/MetEvolSim
آدرس اینترنتی https://pypi.org/project/MetEvolSim/
مجوز GNU General Public License v3 (GPLv3)
<p align="center"> <img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/metevolsim_logo.png" width=300> </p> <p align="center"> <em>Metabolome Evolution Simulator</em> <br/><br/> A Python package to simulate the long-term evolution of metabolic levels. <br/><br/> <a href="https://badge.fury.io/py/MetEvolSim"><img src="https://badge.fury.io/py/MetEvolSim.svg" alt="PyPI version" height="18"></a> <a href="https://github.com/charlesrocabert/MetEvolSim/actions"><img src="https://github.com/charlesrocabert/MetEvolSim/workflows/Upload Python Package/badge.svg" /></a>&nbsp; <a href="https://github.com/charlesrocabert/MetEvolSim/LICENSE.html"><img src="https://img.shields.io/badge/License-GPLv3-blue.svg" /></a> </p> ----------------- <p align="justify"> MetEvolSim (<em>Metabolome Evolution Simulator</em>) is a Python package providing numerical tools to simulate the long-term evolution of metabolic abundances in kinetic models of metabolic network. MetEvolSim takes as an input a <a href="http://sbml.org/Main_Page" target="_blank">SBML-formatted</a> metabolic network model. Kinetic parameters and initial metabolic concentrations must be specified, and the model must reach a stable steady-state. Steady-state concentrations are computed thanks to <a href="http://copasi.org/" target="_blank">Copasi</a> software. </p> <p align="justify"> MetEvolSim is being developed by Charles Rocabert, Gábor Boross, Orsolya Liska and Balázs Papp. </p> <p align="justify"> Do you plan to use MetEvolSim for research purpose? Do you encounter issues with the software? Do not hesitate to contact <a href="mailto:charles[DOT]rocabert[AT]helsinki[DOT]fi">Charles Rocabert</a>. </p> <p align="center"> <img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/BRC_logo.png" height="100px"></a>&nbsp;&nbsp;&nbsp;<img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/MTA_logo.png" height="100px"></a> </p> ## Table of contents - [Publications](#publications) - [Dependencies](#dependencies) - [Installation](#installation) - [First usage](#first_usage) - [Help](#help) - [Ready-to-use examples](#examples) - [List of tested metabolic models](#tested_models) - [Copyright](#copyright) - [License](#license) ## Publications <a name="publications"></a> • Project cited in O’Shea & Misra (2020) (https://doi.org/10.1007/s11306-020-01657-3). ## Dependencies <a name="dependencies"></a> - Python &ge; 3, - Numpy &ge; 1.21 (automatically installed when using pip), - Python-libsbml &ge; 5.19 (automatically installed when using pip), - NetworkX &ge; 2.6 (automatically installed when using pip), - CopasiSE &ge; 4.27 (to be installed separately), - pip &ge; 21.3.1 (optional). ## Installation <a name="installation"></a> &bullet; To install Copasi software, visit http://copasi.org/. You will need the command line version named CopasiSE. &bullet; To install the latest release of MetEvolSim: ```shell pip install MetEvolSim ``` Alternatively, download the <a href="https://github.com/charlesrocabert/MetEvolSim/releases/latest">latest release</a> in the folder of your choice and unzip it. Then follow the instructions below: ```shell # Navigate to the MetEvolSim folder cd /path/to/MetEvolSim # Install MetEvolSim Python package python3 setup.py install ``` ## First usage <a name="first_usage"></a> MetEvolSim has been tested with tens of publicly available metabolic networks, but we cannot guarantee it will work with any model (see the [list of tested metabolic models](#tested_models)). The package provides a class to manipulate SBML models: the class <code>Model</code>. It is also necessary to define an objective function (a list of target reactions and their coefficients), and to provide the path of <a href="http://copasi.org/">CopasiSE</a> software. Please note that coefficients are not functional in the current version of MetEvolSim. ```python # Import MetEvolSim package import metevolsim # Create an objective function target_fluxes = [['ATPase', 1.0], ['PDC', 1.0]] # Load the SBML metabolic model model = metevolsim.Model(sbml_filename='glycolysis.xml', objective_function=target_fluxes, copasi_path='/Applications/COPASI/CopasiSE') # Print some informations on the metabolic model print(model.get_number_of_species()) print(model.get_wild_type_species_value('Glc')) # Get a kinetic parameter at random param = model.get_random_parameter() print(param) # Mutate this kinetic parameter with a log-scale mutation size 0.01 model.random_parameter_mutation(param, sigma=0.01) # Compute wild-type and mutant steady-states model.compute_wild_type_steady_state() model.compute_mutant_steady_state() # Run a metabolic control analysis on the wild-type model.compute_wild_type_metabolic_control_analysis() # This function will output two datasets: # - output/wild_type_MCA_unscaled.txt containing unscaled control coefficients, # - output/wild_type_MCA_scaled.txt containing scaled control coefficients. # Compute all pairwise metabolite shortest paths model.build_species_graph() model.save_shortest_paths(filename="glycolysis_shortest_paths.txt") # Compute a flux drop analysis to measure the contribution of each flux to the fitness # (in this example, each flux is dropped at 1% of its original value) model.flux_drop_analysis(drop_coefficient=0.01, filename="flux_drop_analysis.txt", owerwrite=True) ``` MetEvolSim offers two specific numerical approaches to analyze the evolution of metabolic abundances: - <strong>Evolution experiments</strong>, based on a Markov Chain Monte Carlo (MCMC) algorithm, - <strong>Sensitivity analysis</strong>, either by exploring every kinetic parameters in a given range and recording associated fluxes and metabolic abundances changes (One-At-a-Time sensitivity analysis), or by exploring the kinetic parameters space at random, by mutating a single kinetic parameter at random many times (random sensitivity analysis). All numerical analyses output files are saved in a subfolder <code>output</code>. ### Evolution experiments: <p align="center"> <img src="https://github.com/charlesrocabert/MetEvolSim/raw/master/pic/mcmc_algorithm.png"> </p> <p align="justify"> <strong>Algorithm overview:</strong> <strong>A.</strong> The model of interest is loaded as a wild-type from a SBML file (kinetic equations, kinetic parameter values and initial metabolic concentrations must be specified). <strong>B.</strong> At each iteration <em>t</em>, a single kinetic parameter is selected at random and mutated through a log10-normal distribution of standard deviation &sigma;. <strong>C.</strong> The new steady-state is computed using Copasi software, and the MOMA distance <em>z</em> between the mutant and the wild-type target fluxes is computed. <strong>D.</strong> If <em>z</em> is under a given selection threshold &omega;, the mutation is accepted. Else, the mutation is discarded. <strong>E.</strong> A new iteration <em>t+1</em> is computed. </p> <br/> Six types of selection are available: - <code>MUTATION_ACCUMULATION</code>: Run a mutation accumulation experiment by accepting all new mutations without any selection threshold, - <code>ABSOLUTE_METABOLIC_SUM_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the sum of absolute metabolic abundances, - <code>ABSOLUTE_TARGET_FLUXES_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the MOMA distance of absolute target fluxes, - <code>RELATIVE_TARGET_FLUXES_SELECTION</code>: Run an evolution experiment by applying a stabilizing selection on the MOMA distance of relative target fluxes. ```python # Load a Markov Chain Monte Carlo (MCMC) instance mcmc = metevolsim.MCMC(sbml_filename='glycolysis.xml', objective_function=target_fluxes, total_iterations=10000, sigma=0.01, selection_scheme="MUTATION_ACCUMULATION", selection_threshold=1e-4, copasi_path='/Applications/COPASI/CopasiSE') # Initialize the MCMC instance mcmc.initialize() # Compute the successive iterations and write output files stop_MCMC = False while not stop_MCMC: stop_mcmc = mcmc.iterate() mcmc.write_output_file() mcmc.write_statistics() ``` ### One-At-a-Time (OAT) sensitivity analysis: For each kinetic parameter p, each metabolic abundance [X<sub>i</sub>] and each flux &nu;<sub>j</sub>, the algorithm numerically computes relative derivatives and control coefficients. ```python # Load a sensitivity analysis instance sa = metevolsim.SensitivityAnalysis(sbml_filename='glycolysis.xml', copasi_path='/Applications/COPASI/CopasiSE') # Run the full OAT sensitivity analysis sa.run_OAT_analysis(factor_range=1.0, factor_step=0.01) ``` ### Random sensitivity analysis: At each iteration, a single kinetic parameter p is mutated at random in a log10-normal distribution of size &sigma;, and relative derivatives and control coefficients are computed. ```python # Load a sensitivity analysis instance sa = metevolsim.SensitivityAnalysis(sbml_filename='glycolysis.xml', copasi_path='/Applications/COPASI/CopasiSE') # Run the full OAT sensitivity analysis sa.run_random_analysis(sigma=0.01, nb_iterations=1000) ``` ## Help <a name="help"></a> To get some help on a MetEvolSim class or method, use the Python help function: ```python help(metevolsim.Model.set_species_initial_value) ``` to obtain a quick description and the list of parameters and outputs: ``` Help on function set_species_initial_value in module metevolsim: set_species_initial_value(self, species_id, value) Set the initial concentration of the species 'species_id' in the mutant model. Parameters ---------- species_id: str Species identifier (as defined in the SBML model). value: float >= 0.0 Species abundance. Returns ------- None (END) ``` ## Ready-to-use examples <a name="examples"></a> Ready-to-use examples are included in the Python package. They can also be downloaded here: https://github.com/charlesrocabert/MetEvolSim/raw/master/example/example.zip. ## List of tested metabolic models <a name="tested_models"></a> | **Reference** | **Model** | **Running with MetEvolSim** | |-------------------------|--------------------------------------|-----------------------------| | Bakker et al. (1997) | _Trypanosoma brucei_ glycolysis | :x: | | Curto et al. (1998) | Human purine metabolism | :x: | | Mulquiney et al. (1999) | Human erythrocyte | :white_check_mark: | | Jamshidi et al. (2001) | Red blood cell | :x: | | Bali et al. (2001) | Red blood cell glycolysis | :white_check_mark: | | Lambeth et al. (2002) | Skeletal muscle glycogenolysis | :white_check_mark: | | Holzhutter et al. (2004)| Human erythrocyte | :white_check_mark: | | Beard et al. (2005) | Mitochondrial respiration | :x: | | Banaji et al. (2005) | Cerebral blood flood control | :white_check_mark: | | Bertram et al. (2006) | Mitochondrial ATP production | :x: | | Bruck et al. (2008) | Yeast glycolysis | :white_check_mark: | | Reed et al. (2008) | Glutathione metabolism | :x: | | Curien et al. (2009) | Aspartame metabolism | :x: | | Jerby et al. (2010) | Human liver metabolism | :x: | | Li et al. (2010) | Yeast glycolysis | :x: | | Bekaert et al. (2010) | Mouse metabolism reconstruction | :x: | | Bordbar et al. (2011) | Human multi-tissues | :x: | | Koenig et al. (2012) | Hepatocyte glucose metabolism | :white_check_mark: | | Messiha et al. (2013) | Yeast glycolysis + pentose phosphate | :white_check_mark: | | Mitchell et al. (2013) | Liver iron metabolism | :x: | | Stanford et al. (2013) | Yeast whole cell model | :x: | | Bordbar et al. (2015) | Red blood cell | :x: | | Costa et al. (2016) | _E. coli_ core metabolism | :white_check_mark: | | Millard et al. (2016) | _E. coli_ core metabolism | :white_check_mark: | | Bulik et al. (2016) | Hepatic glucose metabolism | :white_check_mark: | ## Copyright <a name="copyright"></a> Copyright &copy; 2018-2022 Charles Rocabert, Gábor Boross, Orsolya Liska and Balázs Papp. All rights reserved. ## License <a name="license"></a> <p align="justify"> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. </p> <p align="justify"> This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. </p> <p align="justify"> You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/. </p>


نیازمندی

مقدار نام
- python-libsbml
- numpy
- networkx


زبان مورد نیاز

مقدار نام
>=3 Python


نحوه نصب


نصب پکیج whl MetEvolSim-0.6.2:

    pip install MetEvolSim-0.6.2.whl


نصب پکیج tar.gz MetEvolSim-0.6.2:

    pip install MetEvolSim-0.6.2.tar.gz