معرفی شرکت ها


Mesa-Adapted-0.8.7.3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Forked Agent-based modeling (ABM) in Python 3+
ویژگی مقدار
سیستم عامل OS Independent
نام فایل Mesa-Adapted-0.8.7.3
نام Mesa-Adapted
نسخه کتابخانه 0.8.7.3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Project Mesa Team / Stefano Probst
ایمیل نویسنده senden9@gmail.com
آدرس صفحه اصلی https://github.com/senden9/mesa/tree/pipy-fork
آدرس اینترنتی https://pypi.org/project/Mesa-Adapted/
مجوز Apache 2.0
Mesa: Fork of the Agent-based modeling in Python 3+ =================================================== Fork of the original Mesa project till https://github.com/projectmesa/mesa/pull/944 and/or https://github.com/projectmesa/mesa/issues/943 are soved. .. image:: https://api.travis-ci.org/projectmesa/mesa.svg?branch=master :target: https://travis-ci.org/projectmesa/mesa .. image:: https://codecov.io/gh/projectmesa/mesa/branch/master/graph/badge.svg :target: https://codecov.io/gh/projectmesa/mesa .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black `Mesa`_ is an Apache2 licensed agent-based modeling (or ABM) framework in Python. It allows users to quickly create agent-based models using built-in core components (such as spatial grids and agent schedulers) or customized implementations; visualize them using a browser-based interface; and analyze their results using Python's data analysis tools. Its goal is to be the Python 3-based alternative to NetLogo, Repast, or MASON. .. image:: https://github.com/projectmesa/mesa/blob/master/docs/images/Mesa_Screenshot.png :width: 100% :scale: 100% :alt: A screenshot of the Schelling Model in Mesa *Above: A Mesa implementation of the Schelling segregation model, being visualized in a browser window and analyzed in a Jupyter notebook.* .. _`Mesa` : https://github.com/projectmesa/mesa/ Features ------------ * Modular components * Browser-based visualization * Built-in tools for analysis * Example model library Using Mesa ------------ Getting started quickly: .. code-block:: bash $ pip install mesa You can also use `pip` to install the github version: .. code-block:: bash $ pip install -e git+https://github.com/projectmesa/mesa#egg=mesa Take a look at the `examples <https://github.com/projectmesa/mesa/tree/master/examples>`_ folder for sample models demonstrating Mesa features. For more help on using Mesa, check out the following resources: * `Intro to Mesa Tutorial`_ * `Docs`_ * `Email list for users`_ * `PyPI`_ .. _`Intro to Mesa Tutorial` : http://mesa.readthedocs.org/en/master/tutorials/intro_tutorial.html .. _`Docs` : http://mesa.readthedocs.org/en/master/ .. _`Email list for users` : https://groups.google.com/d/forum/projectmesa .. _`PyPI` : https://pypi.python.org/pypi/Mesa/ Running Mesa in Docker ------------------------ You can run Mesa in a Docker container in a few ways. If you are a Mesa developer, first `install docker-compose <https://docs.docker.com/compose/install/>`_ and then run: .. code-block:: bash $ docker-compose build --pull ... $ docker-compose up -d dev # start the docker container $ docker-compose exec dev bash # enter the docker container that has your current version of Mesa installed at /opt/mesa $ mesa runserver examples/Schelling # or any other example model in examples The docker-compose file does two important things: * It binds the docker container's port 8521 to your host system's port 8521 so you can interact with the running model as usual by visiting localhost:8521 on your browser * It mounts the mesa root directory (relative to the docker-compose.yml file) into /opt/mesa and runs pip install -e on that directory so your changes to mesa should be reflected in the running container. If you are a model developer that wants to run Mesa on a model (assuming you are currently in your top-level model directory with the run.py file): .. code-block:: bash $ docker run --rm -it -p127.0.0.1:8521:8521 -v${PWD}:/code comses/mesa:dev mesa runserver /code Contributing back to Mesa ---------------------------- If you run into an issue, please file a `ticket`_ for us to discuss. If possible, follow up with a pull request. If you would like to add a feature, please reach out via `ticket`_ or the `dev email list`_ for discussion. A feature is most likely to be added if you build it! * `Contributors guide`_ * `Github`_ .. _`ticket` : https://github.com/projectmesa/mesa/issues .. _`dev email list` : https://groups.google.com/forum/#!forum/projectmesa-dev .. _`Contributors guide` : https://github.com/projectmesa/mesa/blob/master/CONTRIBUTING.rst .. _`Github` : https://github.com/projectmesa/mesa/


نیازمندی

مقدار نام
- click
- cookiecutter
- networkx
- numpy
- pandas
- tornado
- tqdm
- coverage
- flake8
>=4.6 pytest
- pytest-cov
- sphinx
- sphinx
- ipython


نحوه نصب


نصب پکیج whl Mesa-Adapted-0.8.7.3:

    pip install Mesa-Adapted-0.8.7.3.whl


نصب پکیج tar.gz Mesa-Adapted-0.8.7.3:

    pip install Mesa-Adapted-0.8.7.3.tar.gz