معرفی شرکت ها


Mesa-1.1.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Agent-based modeling (ABM) in Python 3+
ویژگی مقدار
سیستم عامل OS Independent
نام فایل Mesa-1.1.1
نام Mesa
نسخه کتابخانه 1.1.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Project Mesa Team
ایمیل نویسنده projectmesa@googlegroups.com
آدرس صفحه اصلی https://github.com/projectmesa/mesa
آدرس اینترنتی https://pypi.org/project/Mesa/
مجوز Apache 2.0
Mesa: Agent-based modeling in Python 3+ ========================================= .. image:: https://github.com/projectmesa/mesa/workflows/build/badge.svg :target: https://github.com/projectmesa/mesa/actions .. image:: https://codecov.io/gh/projectmesa/mesa/branch/main/graph/badge.svg :target: https://codecov.io/gh/projectmesa/mesa .. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black .. image:: https://img.shields.io/matrix/project-mesa:matrix.org?label=chat&logo=Matrix :target: https://matrix.to/#/#project-mesa:matrix.org It allows users to quickly create agent-based models using built-in core components (such as spatial grids and agent schedulers) or customized implementations; visualize them using a browser-based interface; and analyze their results using Python's data analysis tools. Its goal is to be the Python 3-based alternative to NetLogo, Repast, or MASON. .. image:: https://raw.githubusercontent.com/projectmesa/mesa/main/docs/images/Mesa_Screenshot.png :width: 100% :scale: 100% :alt: A screenshot of the Schelling Model in Mesa *Above: A Mesa implementation of the Schelling segregation model, being visualized in a browser window and analyzed in a Jupyter notebook.* .. _`Mesa` : https://github.com/projectmesa/mesa/ Features ------------ * Modular components * Browser-based visualization * Built-in tools for analysis * Example model library Using Mesa ------------ Getting started quickly: .. code-block:: bash $ pip install mesa You can also use `pip` to install the github version: .. code-block:: bash $ pip install -U -e git+https://github.com/projectmesa/mesa@main#egg=mesa Or any other (development) branch on this repo or your own fork: .. code-block:: bash $ pip install -U -e git+https://github.com/YOUR_FORK/mesa@YOUR_BRANCH#egg=mesa Take a look at the `examples <https://github.com/projectmesa/mesa/tree/main/examples>`_ folder for sample models demonstrating Mesa features. For more help on using Mesa, check out the following resources: * `Intro to Mesa Tutorial`_ * `Docs`_ * `Email list for users`_ * `PyPI`_ .. _`Intro to Mesa Tutorial` : http://mesa.readthedocs.org/en/main/tutorials/intro_tutorial.html .. _`Docs` : http://mesa.readthedocs.org/en/main/ .. _`Email list for users` : https://groups.google.com/d/forum/projectmesa .. _`PyPI` : https://pypi.python.org/pypi/Mesa/ Running Mesa in Docker ------------------------ You can run Mesa in a Docker container in a few ways. If you are a Mesa developer, first `install Docker Compose <https://docs.docker.com/compose/install/>`_ and then, in the folder containing the Mesa Git repository, you run: .. code-block:: bash $ docker compose up # If you want to make it run in the background, you instead run $ docker compose up -d This runs the wolf-sheep predation model, as an example. With the docker-compose.yml file in this Git repository, the `docker compose up` command does two important things: * It mounts the mesa root directory (relative to the docker-compose.yml file) into /opt/mesa and runs pip install -e on that directory so your changes to mesa should be reflected in the running container. * It binds the docker container's port 8521 to your host system's port 8521 so you can interact with the running model as usual by visiting localhost:8521 on your browser If you are a model developer that wants to run Mesa on a model, you need to: * make sure that your model folder is inside the folder containing the docker-compose.yml file * change the ``MODEL_DIR`` variable in docker-compose.yml to point to the path of your model * make sure that the model folder contains a run.py file Then, you just need to run `docker compose up -d` to make it accessible from ``localhost:8521``. Contributing to Mesa ---------------------------- Want to join the Mesa team or just curious about what is happening with Mesa? You can... * Join our `Matrix chat room`_ in which questions, issues, and ideas can be (informally) discussed. * Come to a monthly dev session (you can find dev session times, agendas and notes on `Mesa discussions`_). * Just check out the code on `GitHub`_. If you run into an issue, please file a `ticket`_ for us to discuss. If possible, follow up with a pull request. If you would like to add a feature, please reach out via `ticket`_ or join a dev session (see `Mesa discussions`_). A feature is most likely to be added if you build it! Don't forget to checkout the `Contributors guide`_. .. _`Matrix chat room` : https://matrix.to/#/#project-mesa:matrix.org .. _`Mesa discussions` : https://github.com/projectmesa/mesa/discussions .. _`GitHub` : https://github.com/projectmesa/mesa/ .. _`ticket` : https://github.com/projectmesa/mesa/issues .. _`Contributors guide` : https://github.com/projectmesa/mesa/blob/main/CONTRIBUTING.rst Citing Mesa ---------------------------- To cite Mesa in your publication, you can use the `CITATION.bib`_. .. _`CITATION.bib` : https://github.com/projectmesa/mesa/blob/main/CITATION.bib


نیازمندی

مقدار نام
- numpy
- click
- cookiecutter
- networkx
- pandas
- tornado
- tqdm
- black
- coverage
- flake8
>=4.6 pytest
- pytest-cov
- sphinx
- sphinx
- ipython


زبان مورد نیاز

مقدار نام
>=3.8 Python


نحوه نصب


نصب پکیج whl Mesa-1.1.1:

    pip install Mesa-1.1.1.whl


نصب پکیج tar.gz Mesa-1.1.1:

    pip install Mesa-1.1.1.tar.gz