معرفی شرکت ها


Medeina-2.1


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

A automated solution for building of cumulative interacion web
ویژگی مقدار
سیستم عامل OS Independent
نام فایل Medeina-2.1
نام Medeina
نسخه کتابخانه 2.1
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Daniel Davies
ایمیل نویسنده dd16785@bristol.ac.uk
آدرس صفحه اصلی https://github.com/Daniel-Davies/Medeina
آدرس اینترنتی https://pypi.org/project/Medeina/
مجوز -
[![Build Status](https://travis-ci.com/Daniel-Davies/Medeina.svg?branch=master)](https://travis-ci.com/Daniel-Davies/Medeina) [![codecov](https://codecov.io/gh/Daniel-Davies/Medeina/branch/master/graph/badge.svg)](https://codecov.io/gh/Daniel-Davies/Medeina) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) # Medeina Medeina is a python package for automating the construction of species interaction webs, such as food webs, or pollination webs.The package allows both management of a data store of interactions, and functions needed to make use of the data store in building a cumulative interaction web. For convenience, Medeina comes with a pre-loaded data store of 2,740,185 interactions, coming from 38,865 unique species, which is de-compressed and readily available from the first use. A list of the datasets that come native with Medeina can be found [here](https://github.com/Daniel-Davies/MedeinaPublicationTests) under 'dataset_lists'. # Features ## The Web Class For creating species interaction webs, you will need a list of species from your environment. The project will standardise these names for you, by using the [EcoNameTranslator package](https://pypi.org/project/EcoNameTranslator/) (a slightly more powerful version of the R taxize package). The species names can be in any format- whether scientific species name, scientific names at higher taxonomic ranks, or common English name (although this should be used with caution). Under the hood, Medeina translates these forms to scientific species names when matching possible interactions. You may also specify a taxonomic rank, which will dictate to what extent similarity of species can be used to infer interactions, which can help you find interaction store data undersampling. The default is exact string name matching, but you may also specify Genus, Family, Class, Order, Phylum and Kingdom. When the cumulative interaction web has been computed, it can be interpreted as either a list of tuples, a numpy matrix, or a networkx object. ## The WebStore If you would like to add your own species interaction dataset to Medeina, you can do so with the WebStore object. CSV file formats are taken, and your data may be in list format (where each row is an individual interaction), or a matrix. The names in your interaction dataset are also parsed and translated to scientific species names for Medeina to use. Take a look at the official documentation() for examples of how to add datasets in a range of formats. # Quick Examples ## Building an interaction web out-of-the-box ```python from Medeina import Web w = Web() species_data = ['Panthera Tigris','Gazelle', 'Equus'] result = w.apply(species_data) print(result.to_list()) # [('Panthera Tigris','hello')...] ``` ## Tailoring the interaction data store ```python from Medeina import Web web = Web() pollination_web = web.filter_by_interaction_type( ["pollination"] ) british_pollination_web = pollination_web.filter_by_country( ["United Kingdom"] ) ... result = british_pollination_web.apply( species=[...] ) result = w.apply(species_data) print(result.to_list()) # [('Panthera Tigris','hello')...] ``` ## Adding your own interaction data ```python from Medeina import WebStore store = WebStore() # Specify data properties dct = {} dct['source'] = 'Davies(2020)' ... dct['encoding'] = {} dct['encoding']['interactionFormat'] = 'pair' dct['encoding']['head'] = 'Predator' dct['encoding']['tail'] = 'Prey' dct['encoding']['evidencedBy'] = 'Evidence' dct['encoding']['path'] = "C:/Users/..." # Read, Index, and Add Interactions store.add_interactions(dct) # For exporting data from the WebStore store.export_data(path="C:/Users/...", \ datasets=[2,4..]) ``` ## Auditing links ```python from Medeina import Web w = Web() species_data = ['Panthera Tigris','Gazelle', 'Equus'] result = w.apply(species_data) # A csv of the links, meta data, # and the original links that led to # the inference result.audit("C:/...") ```


نیازمندی

مقدار نام
- pycountry
- taxon-parser
- networkx
- numpy
- msgpack
- EcoNameTranslator
- requests
- pandas


نحوه نصب


نصب پکیج whl Medeina-2.1:

    pip install Medeina-2.1.whl


نصب پکیج tar.gz Medeina-2.1:

    pip install Medeina-2.1.tar.gz