معرفی شرکت ها


MedCLIP-0.0.2


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Contrastive Learning from Medical Images and Text.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MedCLIP-0.0.2
نام MedCLIP
نسخه کتابخانه 0.0.2
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zifeng Wang
ایمیل نویسنده zifengw2@illinois.edu
آدرس صفحه اصلی https://github.com/RyanWangZf/MedCLIP
آدرس اینترنتی https://pypi.org/project/MedCLIP/
مجوز -
# MedCLIP [![PyPI version](https://badge.fury.io/py/medclip.svg)](https://badge.fury.io/py/medclip) [![Downloads](https://pepy.tech/badge/medclip)](https://pepy.tech/project/medclip) ![GitHub Repo stars](https://img.shields.io/github/stars/ryanwangzf/medclip) ![GitHub Repo forks](https://img.shields.io/github/forks/ryanwangzf/medclip) Wang, Zifeng and Wu, Zhenbang and Agarwal, Dinesh and Sun, Jimeng. (2022). MedCLIP: Contrastive Learning from Unpaired Medical Images and Texts. EMNLP'22. [Paper PDF](https://arxiv.org/pdf/2210.10163.pdf) ## Download MedCLIP Before download MedCLIP, you need to find feasible torch version (with GPU) on https://pytorch.org/get-started/locally/. Then, download MedCLIP by ```bash pip install git+https://github.com/RyanWangZf/MedCLIP.git # or pip install medclip ``` ## Three lines to get pretrained MedCLIP models ```python from medclip import MedCLIPModel, MedCLIPVisionModelViT, MedCLIPVisionModel # load MedCLIP-ResNet50 model = MedCLIPModel(vision_cls=MedCLIPVisionModel) model.from_pretrained() # load MedCLIP-ViT model = MedCLIPModel(vision_cls=MedCLIPVisionModelViT) model.from_pretrained() ``` ## As simple as using CLIP ```python from medclip import MedCLIPModel, MedCLIPVisionModelViT from medclip import MedCLIPProcessor from PIL import Image # prepare for the demo image and texts processor = MedCLIPProcessor() image = Image.open('./example_data/view1_frontal.jpg') inputs = processor( text=["lungs remain severely hyperinflated with upper lobe emphysema", "opacity left costophrenic angle is new since prior exam ___ represent some loculated fluid cavitation unlikely"], images=image, return_tensors="pt", padding=True ) # pass to MedCLIP model model = MedCLIPModel(vision_cls=MedCLIPVisionModelViT) model.from_pretrained() model.cuda() outputs = model(**inputs) print(outputs.keys()) # dict_keys(['img_embeds', 'text_embeds', 'logits', 'loss_value', 'logits_per_text']) ``` ## MedCLIP for Prompt-based Classification ```python from medclip import MedCLIPModel, MedCLIPVisionModelViT from medclip import MedCLIPProcessor from medclip import PromptClassifier processor = MedCLIPProcessor() model = MedCLIPModel(vision_cls=MedCLIPVisionModelViT) model.from_pretrained() clf = PromptClassifier(model, ensemble=True) clf.cuda() # prepare input image from PIL import Image image = Image.open('./example_data/view1_frontal.jpg') inputs = processor(images=image, return_tensors="pt") # prepare input prompt texts from medclip.prompts import generate_chexpert_class_prompts, process_class_prompts cls_prompts = process_class_prompts(generate_chexpert_class_prompts(n=10)) inputs['prompt_inputs'] = cls_prompts # make classification output = clf(**inputs) print(output) # {'logits': tensor([[0.5154, 0.4119, 0.2831, 0.2441, 0.4588]], device='cuda:0', # grad_fn=<StackBackward0>), 'class_names': ['Atelectasis', 'Cardiomegaly', 'Consolidation', 'Edema', 'Pleural Effusion']} ```


نیازمندی

مقدار نام
- numpy
- pandas
- Pillow
- requests
- tqdm
- wget
>=3.7 nltk
>=1.1.2 scikit-learn
>=1.3.4 textaugment
>=0.6.11 timm
>=1.12.1 torch
>=0.13.1 torchvision
>=4.23.1 transformers


نحوه نصب


نصب پکیج whl MedCLIP-0.0.2:

    pip install MedCLIP-0.0.2.whl


نصب پکیج tar.gz MedCLIP-0.0.2:

    pip install MedCLIP-0.0.2.tar.gz