معرفی شرکت ها


MatricesM-0.9a9.post3


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

Python>=3.6 library for creating and using matrices used in linear algebra and statistics
ویژگی مقدار
سیستم عامل OS Independent
نام فایل MatricesM-0.9a9.post3
نام MatricesM
نسخه کتابخانه 0.9a9.post3
نگهدارنده []
ایمیل نگهدارنده []
نویسنده semihM
ایمیل نویسنده -
آدرس صفحه اصلی https://github.com/MathStuff/Matrices
آدرس اینترنتی https://pypi.org/project/MatricesM/
مجوز MIT
# <a href="https://pypi.org/project/MatricesM/">MatricesM</a> #### A stand-alone library for Python 3.6 and higher to create and manipulate matrices used in linear algebra and dataframes in statistics #### [Join MathStuff's Slack workspace](https://join.slack.com/t/mathstuffm/shared_invite/enQtNjE1NzE4NjM2ODM0LTk3ODEyNDVhY2Y5OGU1ZjZmZDc0YjQwMmE2YTJkZTczMGI1ODdmZGY2ZTQ2ZGRiMTM3MmQ0NjczODdmMzBiYjI) for questions and discussions. #### Check out [the wiki](https://github.com/MathStuff/MatricesM/wiki) for better documentation ### Install using pip: <code>pip install MatricesM</code> ### Import by using: ```python import MatricesM as mm #Use by calling : mm.Matrix(arguments) ``` #### OR ```python from MatricesM import * #Use matrices directly : Matrix(arguments) ``` ### Import and print example matrices: ```python from MatricesM.exampleMatrices import * ``` ### Basic syntax: _MatricesM.matrix.**Matrix**_( **dim**: _int | [int,int] | (int,int)_ = _None_ Dimensions of the matrix. **_Required_**(Unless **data** is given), mainly used for random matrix creation or to reshape the given **data**. **data**: _[Any] | [[Any],...] | str | dict_ = _[]_ Data to use in matrix, **_Optional_**, matrix's elements are picked from this parameter. Matrix filling related parameters are ignored if valid values given to this parameter. If no argument is passed matrix is filled depending on the **fill** and **ranged** **fill**: _Any_ = _None_ Object,method or value to use for filling the matrix with. **_Optional_** . If a _list_ or _range_ is given, given object will be repeated as rows. Accepts custom functions. _default_ is **null** for dataframe dtype, **uniform** for other dtypes. Available special distributions: * _uniform_ * _triangular_ * _gauss_ * _gammavariate,betavariate_ * _expovariate_ * _lognormvariate_ **ranged**: _[*args] | (*args) | dict_ = _(0,1)_ Arguments to pass to the function in **fill**. **_Optional_**. To apply all the elements give a list | tuple. To apply every column individually give a dictionary as _{**"Column_name"**:[*args], ...}_. Arguments should follow one of the following rules: * If 'fill' is uniform, interval to pick numbers from as _[minimum,maximum]_ * If 'fill' is gauss or lognormvariate mean and standard deviation are picked from this attribute as _[mean,standard_deviation]_ * If 'fill' is triangular, range of the numbers and the mode as _[minimum,maximum,mode]_ * If 'fill' is gammavariate or betavariate, alpha and beta values are picked as _[alpha,beta]_ * If 'fill' is expovariate, lambda value have to be given in a list as _[lambda]_""" **features**:_[str, ...]_ = _[]_ Column names. **_Optional_**. If no argument is given, columns get named "col_1","col_2" and so on. **seed**: _int_ = _None_ Seed to use while picking up random numbers. **_Optional_**. **dtype**: _int | float | complex | dataframe_ = _float_ Type of values the Matrix will carry. **_Optional_**. _dataframe_ to enable all types. **coldtypes**: _[type_,...]_ = _[]_ List of type object for each column's data type. **_Optional_**. Requires _dataframe_ dtype to work. **decimal**: _int_ = 4 Amount of decimal places to print. **_Optional_**. **index**: _[Any, ...] | (Any, ...) | Matrix | Label_ = _Label()_ Row labels for each row. **_Optional_**. Only works with _dataframe_ dtype. **implicit**: _bool_ = _False_ Skip setup proccess for faster initiation, if necessary arguments are passed. **_Optional_**. Don't change if you aren't sure what your matrix requires to work properly. ****kwargs**: NOTES, PRECISION, DEFAULT_NULL, ROW_LIMIT, QR_ITERS, EIGENDEC_ITERS, DISPLAY_OPTIONS, DEFAULT_BOOL. ) _MatricesM.matrix.**dataframe**_( **data**=: _[Any] | [[Any],...] | str | dict_ = _[]_ Data to use in the dataframe, **Optional**, matrix's elements are picked from this parameter. Matrix filling related parameters are ignored if valid values given to this parameter. If no argument is passed matrix is filled depending on the **fill** and **ranged** **features**:_[str, ...]_ = _[]_ Column names. **_Optional_**. If no argument is given, columns get named "col_1","col_2" and so on. **coldtypes**: _[type_,...]_ = _[]_ List of type object for each column's data type. **_Optional_**. **decimal**: _int_ = _3_ Amount of decimal places to print. **_Optional_**. **index**: _[Any, ...] | (Any, ...) | Matrix | Label_ = _Label()_ Row labels for each row. **_Optional_**. ****kwargs** #Rest of the arguments passed to Matrix ) ##### -[matrix.py](https://github.com/MathStuff/MatricesM/blob/master/MatricesM/matrix.py) contains the main Matrix class. ##### -[matrices.py](https://github.com/MathStuff/MatricesM/blob/master/MatricesM/constructors/matrices.py) contains functions to create special matrices. ##### -[exampleMatrices.py](https://github.com/MathStuff/MatricesM/blob/master/MatricesM/exampleMatrices.py) contains example matrices. ##### -Check the [project tab](https://github.com/semihM/Matrices/projects) to see the progress -------------- Some examples: -------------- ##### Create matrices filled with random numbers or given values ```python #Creates a 4x4 matrix filled with random float numbers A = Matrix(4) #Creates a 3x5 matrix with elements uniformly distributed in the range from 10 to 25 B = Matrix([3,5],ranged=[10,25]) #Create a 6x6 square matrix filled with random integer numbers in the default range: [0,1] E = Matrix(6,dtype=int) #Create a 200x5 matrix using Gauss distribution with mean=50 and standard deviation=10 F = Matrix([200,5],fill=gauss,ranged=[50,10]) #Create a 10x10 matrix filled with 1's G = Matrix(10,fill=1) #Create a 200x4 matrix filled with integer numbers using triangular distribution where the range is [0,20] and mode is around if not 18 H = Matrix((200,4),fill=triangular,ranged=[0,20,18],dtype=int) #Create a 50x50 matrix filled with complex numbers using beta distribution for both real and imaginary parts with alpha=2 and beta=5 C1 = Matrix(50,fill=betavariate,ranged=[2,5],dtype=complex) #Create a 10x1 matrix filled with the given string S = Matrix((10,1),fill="hello",dtype=dataframe) ``` ---------------------------------------- ##### Generate randomly filled matrices using special distributions ```python #Create a 10000x3 matrix using a triangular distribution with integer values. randomData1 = Matrix((10000,3), fill=triangular, ranged={"feature1":(0,100,50),"feature2":(-50,50,25),"feature3":(10,20,20)}, seed=32141, dtype=int) #Create a 10000x4 matrix using gamma distribution with float numbers. randomData2 = Matrix([10000,4], fill=gammavariate, ranged={"feature1":[1,1.2],"feature2":[12,24],"feature3":[15,100],"feature4":[1.5,3]}, seed=39598) #Create a 10000x4 matrix using normal(gauss) distribution with integer numbers. randomData3 = Matrix([10000,4], fill=gauss, ranged={"feature1":[0,25],"feature2":[100,200],"feature3":[1000,10000],"feature4":[1,100]}, seed=4472142, dtype=int) #Create a 20000x4 matrix using exponential distribution with float numbers. randomData4 = Matrix([20000,4], fill=expovariate, ranged={"feature1":[0.1],"feature2":[0.95],"feature3":[0.5],"feature4":[0.00025]}, seed=21751923) ``` ---------------------------------------- ##### Create special matrices ```python #3x3 identity matrix id3 = Identity(3) #A 8x8 symmetrical matrix filled with numbers in range from 0 to 1 with uniform distribution sym1 = Symmetrical(8) ``` ---------------------------------------- ##### Give list of numbers to create matrices ```python #Creates a matrix with the given list of numbers filled_rows = [[1,2,3],[4,5,6],[7,8,9]] C = Matrix(data=filled_rows) #Create a dataframe from a list data = [["James",180.4,85], ["Tom",172,73], ["Sophia",168.25,65]] df = dataframe(data=data, features=["Name","Height","Weight"], decimal=1) #Same as: df = Matrix(data=data, dtype=dataframe, features=["Name","Height","Weight"], decimal=1) #coldtypes parameter may be required in cases where the data given doesn't represent the desired data types ``` ---------------------------------------- ##### Give a string filled with data and use the numbers in it to create a matrix ```python #Creates a 3x3 matrix from the given string C1 = Matrix(3,"1 0 -1 4 5 5 1 2 2") #Creates a 2x4 matrix from the given string C2 = Matrix([2,4],"5 -2 -3 2 1 0 0 4") #Create a matrix from the given string, dimension is *required* as [dataAmount,features]. Only numbers are picked up data="""1,K,60,69900,6325 2,K,30,79000,5200 3,E,52,85500,7825 4,E,57,17100,8375 5,E,55,5500,5450 6,E,68,27200,8550 7,E,41,20500,4500 8,E,20,69000,5050 9,K,33,13200,8325 10,E,37,31800,5975""" #As an integer matrix intMat = Matrix(dim=[10,4], data=data, features=["id","age","num1","num2"], dtype=int) #Or as a dataframe df = Matrix(dim=[10,4], data=data, features=["id","age","num1","num2"], dtype=dataframe, coldtypes=[int]*4) ``` ---------------------------------------- ##### Read data from files ```python #Create a dataframe matrix from a csv file. read_file accepts 2 optional parameters: encoding, delimiter data_matrix = read_file(data_directory) #Example dataset: https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009 wine = read_file(".../Data/winequality-red.csv") ``` ---------------------------------------- ##### Get specific parts of the matrix (Assuming default column names) ```python #All rows' second to forth columns as a matrix Matrix[:,1:4] == Matrix.t[1:4,:].t #Nineth column of every even numbered row as a matrix Matrix[::2,8] == Matrix[::2,8:9] == Matrix["col_9"][::2] == Matrix.col_9[::2] #Using methods Matrix.select(("col_9"))[::2] == Matrix.col(9)[::2] #Forth to seventh rows as a matrix Matrix[3:7] #Fifth row's eighth element (returns the value as it is, not a new matrix) Matrix[4,7] == Matrix.matrix[4][7] #Use column names Matrix["col_3","col_1","col_2"] == Matrix.select(("col_3","col_1","col_2")) #Use index column for row indices #Return the rows where the level 1 label matches the value Matrix.level[1].ind[value] #Return the "col_4" column of rows using level 3 labels starting with val1's first appearance and ending with the row before val2's first appearance Matrix.level[3].ind[val1:val2,"col_4"] ``` ---------------------------------------- ##### Filter out depending on what you need ```python #Using example dataset, get the rows where the "quality" feature is higher or equal to 6 and pH in range (3,3.3) #All statements should be properly closed with parentheses wineOverSix = winedata.where("(quality>6) and ((pH<3.3) and (pH>3))") #Alternative way (2x faster) wineOverSix = winedata[(winedata["quality"]>6) & ((winedata["pH"]<3.3) & (winedata["pH"]>3))] #Select the columns of pH and quality and assign them to another matrix filtered = winedata.select(("pH","quality")) #Alternative way (2x faster) filtered = winedata["pH","quality"] #Use 'quality' column as row labels winedata.index = winedata.quality #Add 'alcohol' to as level 2 row labels winedata.index.add_level(winedata.alcohol) #Sort by given column and shuffle the data winedata.sortBy("quality") #Data is sorted in increasing order, use reverse=True for decreasing order #Shuffle the rows winedata.shuffle() #Get 20 samples from the data under desired conditions winedata.sample(20,"(quality>5) and ((alcohol<11) or (density>0.95))") #Alternative way (1.5x faster) winedata[(winedata["quality"]>5) & ((winedata["alcohol"]<11) | (winedata["density"]>0.95))].sample(20) #Return all the rows and select 'alcohol' and 'quality' columns where quality is higher than 6 winedata[winedata["quality"]>6,("alcohol", "quality")] #Return the rows of all email adresses using gmail.com domain in the column 'mail' Matrix.match(expression=r"\w+@gmail.com", columns="mail", as_row=True) ``` ---------------------------------------- ##### Apply arithmetic operations to individual rows and columns. ```python #Create a 1000x2 dataframe filled using normal distribution with given arguments marketData = Matrix((1000,2),fill=gauss,ranged={"Price":(250,60),"Discount":(8,2)},dtype=dataframe) #Change invalid values in "Discount" column where it's less than 0 to 0 marketData[marketData["Discount"]<0,"Discount"] = 0 #Explore the data marketData.describe #Multiply 'Price' with 0.9 and subtract 5 also add 10 to 'Discount' under the conditions: Price>100 and Discount<5 marketData.apply( ("*0.9 -5","+10"), ("Price","Discount"), "(Price>100) and (Discount<5)" ) ``` ---------------------------------------- ##### Replace values in the matrix ```python #Replace all 0's with 1's data.replace(old=0,new=1) #Replace all "Pending" values to "Done" in "Order1" and "Order2" columns data.replace(old="Pending", #(data["Order1"]=="Pending") & (data["Order2"]=="Pending") can also be used new="Done", column=("Order1","Order2") ) #Replace all '' values in the column "Length" with the mean of the "Length" column data.replace=(old='', #data["Length"]=="" can also be used new=data.mean("Length",get=0), column="Length" ) #Replace all "FF" values in "Grade" column with "AA" in the column "Grade" where "Year" is less than 2019 data.replace(old="FF", #data["Grade"]=="FF" can also be used new="AA", column="Grade", condition=data["Year"]<=2019 ) #Replace all numbers below 0 in with 0's in column named "F5" where "Score1" is less than "Score2" data.replace(old=data["F5"]<0, new=0, column="F5", condition=data["Score1"]<data["Score2"] ) #Change value of 'Feature5' to 0 in the rows where the 'Feature1' is lower than 0 data[data["Feature1"]<0,"Feature5"] = 0 #Create a matrix with a square filled with 0's in the middle, 5's outside s = Matrix(5,fill=5,dtype=int) s[1:4,1:4] = 0 #Same as using Matrix(3,fill=0) #Visually: """ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Changes to 5 0 0 0 5 5 5 5 5 5 ----> 5 0 0 0 5 5 5 5 5 5 5 0 0 0 5 5 5 5 5 5 5 5 5 5 5 """ #Change the values in the 2nd to 4th rows' 1st and 3rd columns to 0 and 99 Matrix[1:4,("col_1","col_3")] = [0,99] #Visually: """ 3 9 6 10 3 9 6 10 5 0 4 2 Changes to 0 0 99 2 5 8 2 2 ----> 0 8 99 2 6 1 7 0 0 1 99 0 """ ``` ---------------------------------------- ##### Concatenate a matrix to your matrix. ```python #Concatenate a new column named 'Discounted_Price' containing the product of the 'Price' and 'Discount' columns marketData["Discounted_Price"] = marketData["Price"] - marketData["Price"]*(marketData["Discount"]/100) ``` ---------------------------------------- #### Use your matrix's methods and properties ##### Basics ```python Matrix.grid #Prints ALL of the matrix's elements as a grid, if dtype is dataframe, column names also get printed Matrix.p #Prints the dimensions, wheter or not the matrix is square and the grid. If dtype is dataframe, column names are also printed Matrix.decimal #Returns the chosen amount of decimal digits to round while printing. Can be used to set it's value Matrix.matrix #Returns the matrix's rows as lists in a list. >>> dataframe.data Returns the same thing if dataframe was used instead of Matrix Matrix.dim #Returns the dimension of the matrix; can be used to change the dimensions, ex: [4,8] can be set to [1,32] where rows carry over as columns in order from left to right Matrix.d0 #Returns the amount of rows Matrix.d1 #Returns the amount of columns Matrix.col(n,as_matrix) #Returns the nth column if n is an integer or returns the column named n, as a list or matrix, set as_matrix to True to get the list as a matrix Matrix.row(n,as_matrix) #Returns nth row of the matrix as a list or matrix, set as_matrix to True to get the list as a matrix Matrix.concat(matrix,axis,fillnull) #Concatenate a matrix to self. Set 'axis' to 0 to concatenate as rows, 1(default) to concatenate as columns. 'fillnull' to enable filling missing values with null objects Matrix.add(values,row,col,feature,dtype,index,fillnull) #Adds list to given index in row or col, indeces start from 1. If a column is added, dtype and feature are used determine type and name. If a row is added, 'index' can be used to determine its row label. 'fillnull' to enable any missing values as null objects Matrix.remove(row,col) #Removes the desired row and/or column Matrix.swap(index1,index2,axis,returnmat) #Swap the row or column in index1 with index2. Set 'axis' 0 to use indices for rows, 1 to use as column indices. Column names can be used with axis=1. 'returnmat' to decide wheter or not to return self if 'inplace' is True Matrix.copy #Returns a copy of the matrix Matrix.obj #Returns the string form of the Matrix object which can be evaluated to create the same matrix Matrix.seed #Returns the seed used to generate the random numbers in the matrix, returns None if matrix wasn't filled randomly. Can be used to refill the matrix inplace if set to a new value Matrix.fill #Returns the value or distribution of which the matrix was filled with. Can be used to refill the matrix inplace if set to a new value Matrix.initRange #Returns the value of 'ranged' used while creating the matrix. Can be used to refill the matrix inplace if set to a new value Matrix.intForm #Returns integer form of the matrix Matrix.floatForm #Returns float form of the matrix Matrix.ceilForm #Returns a matrix of all the elements' ceiling values Matrix.floorForm #Returns the same matrix as "intForm" Matrix.roundForm(n) #Returns a matrix of elements' rounded up to n decimal digits. Same as round(Matrix,n) Matrix.kwargs #Returns a dictionary of the matrix's basic attributes Matrix.ROW_LIMIT #Maximum amount of rows to display using 'repr' method, default is 30. Matrix.PRECISION #Decimal places to round to during calculations Matrix.NOTES #String to attach to the string form of self. Notes get displayed after the labels and the grid is processed. Matrix.EIGENVEC_ITERS #How many iterations will be done in eigenvector calculation with shifted inverse iteration method, default is 10. Matrix.QR_ITERS #How many iterations will be done in eigenvalue calculation with QR algorithm, default is 50. Play around with this value if the values you get don't seem right. Matrix.DISPLAY_OPTIONS #Display options as dict; default:{ "allow_label_dupes":False, "dupe_place_holder":"//", "label_seperator":",", "left_top_corner":"+", "left_seperator":"|", "top_seperator":"-", "col_place_holder":"...", "row_place_holder":"..."} Matrix.DEFAULT_NULL #Object to use as null values, default is null. Matrix.DEFAULT_BOOL #Boolean values to use as True and False in a dictionary. {True:1,False:0} is default. Matrix.col_1, Matrix.col_2, ... #Tries to return a 'Matrix.level.name' object pointing at 'Matrix's 'col_1','col_2', ... column name row, if it fails, tries to return all columns with 'col_1','col_2', ... column names in level-1 #Element wise arithmetic operators : "@", "+", "-", "*", "/", "//", "**", "%" #Element wise comparison operators : "<" ,"<=", ">", ">=", "==", "!=", "&", "|", "~" ``` ##### Algebric properties ```python Matrix.det #Returns the determinant of the matrix Matrix.t #Returns the transposed matrix Matrix.ht #Returns the hermitian-transpose of the matrix Matrix.adj #Returns the adjoint matrix Matrix.inv #Returns the inversed matrix Matrix.pseudoinv #Returns the pseudo inverse of the matrix Matrix.rank #Returns the rank of the matrix Matrix.echelon #Returns the echelon form of the matrix Matrix.rrechelon #Returns the reduced row echelon form of the matrix Matrix.eigenvalues #Returns the eigenvalues #Currently doesn't work with singular matrices Matrix.eigenvectors #Returns a list of eigenvectors as matrices Matrix.EIGENDEC #Returns the matrices from eigenvalue decomposition in a tuple Matrix.eigenvecmat #Returns a matrix with eigenvectors as columns Matrix.diagmat #Returns the diagonal matrix from eigenvalue decomposition Matrix.SVD #Returns the U,sigma and the V.ht matrices in a tuple from the singular value decomposition Matrix.LU #Returns both L and U matrices from LU decomposition in a tuple Matrix.lowtri #Returns the lower triangular form (L matrix from LU decomposition) of the matrix Matrix.uptri #Returns the upper triangular form (U matrix from LU decomposition) of the matrix Matrix.symdec #Returns both symmetrical and anti-symmetrical parts of the matrix Matrix.sym #Returns the symmetric part of the matrix Matrix.anti #Returns the antisymmetric part of the matrix Matrix.perma #Returns the permanent of the matrix Matrix.conj #Returns the conjugated forms of the elements in a matrix Matrix.QR #Returns both Q and R matrices from QR decomposition in a tuple Matrix.Q #Returns the orthonormal matrix from the QR decomposition Matrix.R #Returns the upper-triangular matrix from the QR decomposition Matrix.trace #Returns the trace of the matrix Matrix.isSquare #Returns True if the matrix is a square matrix Matrix.isSymmetric #Returns True if the matrix is a symmetric matrix Matrix.isAntiSymmetric #Returns True if the matrix is an antisymmetric matrix Matrix.isPerSymmetric #Returns True if the matrix is a persymmetric matrix Matrix.isHermitian #Returns True if the matrix is a hermitian matrix Matrix.isTriangular #Returns True if the matrix is a triangular matrix Matrix.isUpperTri #Returns True if the matrix is a upper-trianguar matrix Matrix.isLowerTri #Returns True if the matrix is a lower-triangular matrix Matrix.isDiagonal #Returns True if the matrix is a diagonal matrix Matrix.isUpperBidiagonal #Returns True if the matrix is an upper-bidiagonal matrix Matrix.isLowerBidiagonal #Returns True if the matrix is a lower-bidiagonal matrix Matrix.isBidiagonal #Returns True if the matrix is an upper-bidiagonal or a lower-bidiagonal matrix Matrix.isTridiagonal #Returns True if the matrix is a tridiagonal matrix Matrix.isUpperHessenberg #Returns True if the matrix is an upper-Hessenberg matrix Matrix.isLowerHessenberg #Returns True if the matrix is a lower-Hessenberg matrix Matrix.isHessenberg #Returns True if the matrix is an upper-Hessenberg or a lower-Hessenberg matrix Matrix.isToeplitz #Returns True if the matrix is a Toeplitz matrix Matrix.isUnitary #Returns True if the matrix is a unitary matrix Matrix.isIdempotent #Returns True if the matrix is an idempotent matrix Matrix.isOrthogonal #Returns True if the matrix is an orthogonal matrix Matrix.isCircular #Returns True if the matrix is a circular matrix Matrix.isPositive #Returns True if the matrix is a positive valued matrix Matrix.isNonNegative #Returns True if the matrix is a non-negative matrix Matrix.isProjection #Returns True if the matrix is a projection matrix Matrix.isZero #Returns True if the all the elements in the matrix is 0 Matrix.isDefective #Returns True if the nxn matrix has m linearly independent eigenvalues where m<n Matrix.minor(m,n,returndet) #Returns the mth row's nth element's minor matrix's determinant, set returndet to False to get the matrix of which the determinant was calculated Matrix.setdiag(val) #Change diagonal elements to given 'val' or the values in 'val'. If 'val' is a Matrix, diagonals are picked from given matrix's diagonals Matrix.nilpotency(limit) #Returns the nilpotency degree of the matrix, returns None if some elements diverge. Limit parameter is for iteration amount ``` ##### Statistical properties ```python Matrix.features #Returns the column names if given, can also be used to set column names Matrix.index #Returns the values in the index column in a list, can bu used to set new indices Matrix.coldtypes #Returns what type of data each column carries, can be used to set the values. Matrix.head(n) #Returns the first n rows (if there are less than n rows it returns all the rows) Matrix.tail(n) #Returns the last n rows (if there are less than n rows it returns all the rows) Matrix.describe #Returns a description matrix with columns describing the matrix holding column, count, dtype, mean, sdev, min, 25%, 50%, 75%, max. Matrix.info #Returns information about columns: Dtype, Valid data amount, Invalid data amount, Unique data amount Matrix.uniques(column) #Returns the unique set of the 'column'; If 'column' is None, all columns' unique values are returned in a list of lists Matrix.groupBy(columns) #Return a 'Group' object containing the Matrix grouped by given 'columns'. Matrix.sum(n,get) #Returns the sum of the elements in the column with name/index 'n'. If 'n' is None, all column sums are returned. Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.prod(n,get) #Returns the product of the elements in the column with name/index 'n'. If 'n' is None, all column products are returned. Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.find(element,indexStart) #Returns a list of the element's indeces as tuples. Returns None if element not in matrix Matrix.select(columns) #Returns a matrix where the desired columns are concatenated in order. Only works if 'columns' is a tuple or a list Matrix.where(condition) #Returns a matrix where the given condition(s) are True. Example: Matrix.where("(col_1>=0.5) and (col_2!=0)") Matrix.match(regex,columns,as_row) #Return the rows or the values in the matrix depending on 'as_row', in the given column names/numbers in 'columns' as a list/tuple or str/int, matching given 'regex' regular expressions Matrix.apply(expressions,columns,conditions,returnmat) #Apply given 'expression' to given 'columns' where the 'conditions' are True, set returnmat wheter or not to return self. If 'columns' is None, 'expressions' is applied to all columns. Executed as: value=eval('value'+operation) Matrix.transform(function,columns,conditions,returnmat #Pass values into the given 'function' and change them to what it outputs. Rest of the parameters works same as 'apply' method. Executed as: value = function(value) Matrix.replace(old,new,columns,conditions,returnmat) #Change 'old' values to 'new' in the 'columns' where the 'conditions' are True. Set returnmat wheter or not to return self. Matrix.sortBy(column,reverse,returnmat) #Sort the matrix by the desired 'column', do it in decreasing order if 'reverse'==True, and return self if 'returnmat'==True Matrix.shuffle(iterations,returnmat) #Shuffle the rows 'iterations' times and return self if 'returnmat'==True Matrix.sample(size,condition) #Get a sample sized 'size' where the 'condition' is True Matrix.count(column,get) #Returns how many of the values are valid (same type as given in coldtypes) for each or desired column(s). Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.mean(n,get) #Returns the nth column or column named n's average, give None as argument to get the all columns' averages; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.ranged(n,get) #Returns the nth column or column named n's range, give None as argument to get the all columns' ranges; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.median(n,get) #Returns the nth column or column named n's median, give None to get all columns' medians; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.freq(n,get) #Returns the nth column or column named n's elements frequency as a dictionary where elements are keys and how often they repeat as values. If called without arguments, returns every column"s frequencies; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a list of Matrix object for each column. Matrix.mode(n,get) #Returns the nth column or column named n's mode, give None to get all columns' modes; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a list of Matrix object for each column. Matrix.ranked(n,reverse,key,get) #Returns the nth column or column named n's ranks(that are the indices the values would get if they were sorted) give None to get all columns' modes; Use 'get' to choose what to return,-1 for ranks in-place, 0 for a list, 1 for a dictionary(default), 2 for a list of Matrix object for each column. Matrix.iqr(n,as_quartiles,get) #Returns the nth column or column named n's iqr, give None to get all columns' iqr values. If first,second and third quartiles is desired, give as_quartiles parameter bool(True); Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.sdev(n,population,get) #Returns the nth column or column named n's standard deviation, if None is given as an argument returns all columns' standard deviations. Give population parameter 1 if calculation is not for samples, 0 otherwise; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.var(n,population,get) #Returns the nth column or column named n's variance, if None is given as an argument returns all columns' variance. Give population parameter 1 if calculation is not for samples, 0 otherwise; Use 'get' to choose what to return, 0 for a list, 1 for a dictionary(default), 2 for a Matrix. Matrix.cov(col1,col2,population) #Returns the col1 and col2's covariance. Give population parameter True if calculation is not for samples Matrix.z(col,population) #Returns the z-scores of the desired column, call without arguments to get the all z-scores as a matrix. Give population parameter 1 if calculation is not for samples, 0 otherwise. Matrix.corr(column_1,column_2,population,method) #Returns linear correlation of 2 columns chosen from the matrix. If no argument given, returns the correlation matrix. Give population parameter 1 if calculation is not for samples, 0 otherwise; methods available: 'pearson'(default), 'kandell', 'spearman' Matrix.normalize(column,inplace,declare,returnmat) #Normalize the data in the desired column, None to normalize all columns. Give inplace parameter "True" boolean value to make normalization in-place, "False" to return a new matrix with normalized data. 'declare' to guess the new value's data type and replace it in 'coldtypes'. 'returnmat' to decide wheter or not to return self if 'inplace' is True Matrix.stdize(column,inplace,declare,returnmat) #Standardize the data in the desired column, None to standardize all columns. Give inplace parameter "True" boolean value to make standardization in-place, "False" to return a new matrix with standardized data. 'declare' to guess the new value's data type and replace it in 'coldtypes'. 'returnmat' to decide wheter or not to return self if 'inplace' is True Matrix.oneHotEncode(column,concat) #One-hot encode a 'column', 'concat' to decide wheter or not to concatenate the encoded matrix or return it Matrix.fix_coldtypes(column,retur_dtype) #Guess the data type for the given column(s), return dtypes with return_dtype or apply them directly to coldtypes dataframe.level #Inner level class used for passing the level to 'ind' class for row labeling. dataframe.level.ind #Row label indexing class, syntax : dataframe.level[integer_level].ind[row_label] dataframe.level.name #Column name indexing class, syntax : dataframe.level[integer_level].ind[column_name] dataframe.colname #Allows column names' level names over integers, syntax : dataframe.colname[label_name].name[column_name] dataframe.rowname #Allows row labels' level names over integers, syntax : dataframe.rowname[label_name].ind[column_name] ``` ---------------------------------------- ##### Printing options ```python #All the values + column names if it's a dataframe myMatrix.grid #Dimensions + wheter its square or not + the string printed in 'grid' property myMatrix.p #Same as print(myMatrix) #Similar to 'grid' but rows and columns are limited by myMatrix.ROW_LIMIT myMatrix #Issues about dtypes not matching and/or missing data can be solved by using 'replace' method ``` ---------------------------------------- ##### Copying the matrix ```python #Using 'copy' property (Fastest) newMatrix = oldMatrix.copy #Using 'kwargs' property, 'copy' uses this one so it's as fast as 'copy' is newMatrix = Matrix(**oldMatrix.kwargs) #Using 'obj' property (Slowest) newMatrix = eval(oldMatrix.obj) ``` ---------------------------------------- ##### All calculations below returns a matrix filled with 1's where the condition is True, otherwise 0 ```python A**2 == A*A A*2 == A+A A.t.t == A A.adj[2,0] == A.minor(1,3) #bool object can be called to get a boolean value of the matrix, if all elements are 1's then it will return True and False in any other case. bool(Matrix(10,fill=1)) == True #round call is currently required for the next examples due to <~%1e-5 error rate on some calculations round(A @ Matrix(data=Identity(A.dim[0])),4) == round(A, 4) #A assumed to be a square matrix round(A @ A.inv)== Matrix(data=Identity(A.dim[0])) round(A,4) == round(A.sym + A.anti,4) round(A.inv.inv,4) == round(A, 4) round(A.lowtri @ A.uptri, 4) == round(A, 4) round(A.Q @ A.R, 4) == round(A, 4) ``` ---------------------------------------- #### More examples can be found in [exampleMatrices.py](https://github.com/MathStuff/MatricesM/blob/master/MatricesM/exampleMatrices.py)


زبان مورد نیاز

مقدار نام
>=3.6 Python


نحوه نصب


نصب پکیج whl MatricesM-0.9a9.post3:

    pip install MatricesM-0.9a9.post3.whl


نصب پکیج tar.gz MatricesM-0.9a9.post3:

    pip install MatricesM-0.9a9.post3.tar.gz