معرفی شرکت ها


Maisie-0.1.6


Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر
Card image cap
تبلیغات ما

مشتریان به طور فزاینده ای آنلاین هستند. تبلیغات می تواند به آنها کمک کند تا کسب و کار شما را پیدا کنند.

مشاهده بیشتر

توضیحات

User-oriented system for painless managing, storing, sharing, organizing and deploying Machine Learning models.
ویژگی مقدار
سیستم عامل OS Independent
نام فایل Maisie-0.1.6
نام Maisie
نسخه کتابخانه 0.1.6
نگهدارنده []
ایمیل نگهدارنده []
نویسنده Zofia Kochutek, Łukasz Kleczaj, Marek Kochanowski
ایمیل نویسنده support@maisie.dev
آدرس صفحه اصلی https://github.com/nokia-wroclaw/innovativeproject-ml-models-management
آدرس اینترنتی https://pypi.org/project/Maisie/
مجوز MIT
Maisie - ML Models Management System #################################### .. |RTFD_BADGE| image:: https://img.shields.io/readthedocs/maisie.svg :alt: Read the Docs Badge .. |PyPI_Badge| image:: https://img.shields.io/pypi/v/Maisie.svg :alt: PyPI Badge .. |AzureMaisie_Badge| image:: https://img.shields.io/azure-devops/build/maisie-dev/7e500d81-c7bf-42fc-87ca-e58e58dad4ee/1/master.svg :alt: Azure DevOps Badge .. |AzureMaisieDev_Badge| image:: https://img.shields.io/azure-devops/build/maisie-dev/7e500d81-c7bf-42fc-87ca-e58e58dad4ee/1/develop.svg :alt: Azure DevOps Badge .. |AzureSphinxTheme_Badge| image:: https://img.shields.io/azure-devops/build/maisie-dev/7e500d81-c7bf-42fc-87ca-e58e58dad4ee/2.svg :alt: Azure DevOps Badge .. |DockerHub_Badge| image:: https://img.shields.io/docker/pulls/maisiedev/maisie.svg :alt: DockerHub Pulls Badge +------------------------------------------------------------------------------+--------------------------+ | `Maisie (stable) <https://dev.azure.com/maisie/Maisie/_build>`_ | |AzureMaisie_Badge| | +------------------------------------------------------------------------------+--------------------------+ | `Maisie (development) <https://dev.azure.com/maisie/Maisie/_build>`_ | |AzureMaisieDev_Badge| | +------------------------------------------------------------------------------+--------------------------+ | `Maisie Sphinx Theme <https://github.com/maisie-dev/maisie-sphinx-theme>`_ | |AzureSphinxTheme_Badge| | +------------------------------------------------------------------------------+--------------------------+ | `Documentation <https://docs.maisie.dev>`_ | |RTFD_BADGE| | +------------------------------------------------------------------------------+--------------------------+ | `PyPI <https://pypi.org/project/Maisie/>`_ | |PyPI_Badge| | +------------------------------------------------------------------------------+--------------------------+ | `DockerHub <https://hub.docker.com/r/maisiedev/maisie>`_ | |DockerHub_Badge| | +------------------------------------------------------------------------------+--------------------------+ .. contents:: \ .. section-numbering:: Features ======== Could archiving, storing, managing and organizing machine learning models be done efficiently and with great focus on user experience? Sure, Maisie does just that. Maisie is a friendly, easy to use assistant that consists of: - Web Application written in React - Backend API written in Python, Flask - Client Application/Package written in Python and hosted on PyPI It integrates seamlessly with your favorite tools and provides you with all the important data, such as: - Git revisions for all trained models, as well as information about source branches - Searchable, filterable hyperparameters, parameters and metrics - A single identifying dataset name, as well as an optional description - Permanent URLs for easy sharing and downloading of stored models Installing ========== You can get the most current package from `PyPI <https://pypi.org/project/Maisie/>`_ .. code-block:: bash $ pip install Maisie Using it in your training environment is fairly straightforward: .. code-block:: python import maisie from sklearn.externals import joblib # Define your model here model.fit(X, y) model_filename = "example_model.pkl" joblib.dump(model, model_filename) # Define your metrics, fetch parameters and hyperparameters models = maisie.Models() models.upload( name="My first uploaded model", filename=model_filename, dataset_name="Singly Identifying Dataset Name", metrics={"accuracy": accuracy}, hyperparameters=hyperparameters, parameters=parameters, ) Deploying ========= Using docker-compose -------------------- This repository provides a pre-configured ``docker-compose.yml`` file that contains sensible default options. Before starting the containers, you should create a local ``.env`` file using the included ``.env.sample``. To start up all services, run: .. code-block:: bash $ docker-compose up To stop your services, you can press Ctrl+C/Ctrl+D. If you started the services in the background using ``docker-compose up -d``, the correct way to do this would be: .. code-block:: bash $ docker-compose stop You can learn more about Docker Compose by `clicking here <https://docs.docker.com/compose/>`_. Fetching individual images -------------------------- Both frontend and backend images are automatically published to `Docker Hub <https://hub.docker.com>`_ as soon as new stable release is made available. Links - `Frontend image on Docker Hub <https://hub.docker.com/r/kochanowski/maisie>`_ - `Backend image on Docker Hub <https://hub.docker.com/r/kochanowski/maisie>`_ - ...other services For reference, you can look at the `sample Ansible playbook <#>`_ that deploys all containers to a specified host using the locally configured ``.env`` file. Contributing ============ Getting started --------------- 1. Clone the repository from the ``develop`` branch .. code-block:: bash $ git clone -b develop git@github.com:nokia-wroclaw/innovativeproject-ml-models-management.git 2. Install `pre-commit <https://pre-commit.com/#install>`_ 3. Inside the project's root directory install all required githooks: .. code-block:: bash $ pre-commit install 4. To start all required services for local development, run: .. code-block:: bash $ docker-compose up 5. You're all set up! Fixing existing issues ---------------------- 1. Pick one of the `open issues <https://github.com/nokia-wroclaw/innovativeproject-ml-models-management/issues>`_ or `create a new one <https://github.com/nokia-wroclaw/innovativeproject-ml-models-management/issues/new>`_ 2. Create a new branch named ``issue-[number]-[short description]`` derived from the ``develop`` branch, for example .. code-block:: bash $ git checkout -b issue-42-project-removal-permissions develop 3. Make sure your implementation fixes the actual problem and is well tested. Implementing new features ------------------------- When implementing new features, you should start by creating a new branch named ``feature-[short description]`` derived from the ``develop`` branch, for example .. code-block:: bash $ git checkout -b feature-new-user-profile develop Commiting the changes --------------------- To run all tests and check whether all required pre-commit githooks are satisfied, run .. code-block:: bash $ pre-commit run --all-files Your commit message should briefly summarize the changes (if possible) in plain English. To learn how to write a proper commit message, check out `this article <https://juffalow.com/other/write-good-git-commit-message>`_. When ready, create a new pull request compared with the ``develop`` branch set as a base branch. Documentation ============= For the lastest stable release, the documentation can be seen at `docs.maisie.dev <https://docs.maisie.dev>`_.


نیازمندی

مقدار نام
>=7.0 Click
>=2.1.1 gitpython
>=2.22.0 requests
>=10.0 coloredlogs
>=5.1.1 pyyaml
>=3.1.0 terminaltables
>=0.0.93 ago
>=2.8.0 python-dateutil


نحوه نصب


نصب پکیج whl Maisie-0.1.6:

    pip install Maisie-0.1.6.whl


نصب پکیج tar.gz Maisie-0.1.6:

    pip install Maisie-0.1.6.tar.gz